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THE PROBLEM 
Develop new radar techniques based upon statistical meth- 

ods which are applicable to automatic radar systems with in- 
creased detection capabilities.   The specific phase reported here 
is a review and evaluation of some of the distribution-free statisti- 
cal techniques which can possibly be used in signal detection and 
CCM applications. 

RESULTS 

The use of distribution-free detectors is quite feasible 
since: 

1. Several of the distribution-free detectors are uniformly 
better than the parametric detectors for certain classes of 
Gaussian noise. 

2. Several simpler distribution-free detectors are almost as 
efficient as their parametric counterparts. 

RECOMMENDATIONS 

Initiate procedures to implement the design and construc- 
tion of one or more of the better distribution-free 
detectors. 

Investigate better comparison for the various types of 
distribution-free detectors. 



3. Initiate simulated tactical tests of distribution-free detec- 

tors as soon as possible. 

4. Review current research in distribution-free statistics for 
additional applications to distribution-free detectors. 

ADMINISTRATIVE INFORMATION 
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I. INTRODUCTION 

A. GENERAL 
Signal detection, as employed in automatic radar (or sonar) 

systems, is treated as a problem of testing statistical hypotheses. 
In its simplest form, this reduces to a choice between signal or no 
signal.   The choice is inferred from the data collected by the ra- 
dar (or sonar) system through the application of a decision rule or 
process.   When the statistical nature, of the data is known for the 
signal and no-signal cases, then a conventional procedure, such as 
the Neyman-Pearson test or the sequential probability ratio test, 
may be used. 

When the noise or signal-plus-noise distribution is unknown, 
the afore-mentioned detection methods present two major difficul- 
ties.   If the underlying statistics are known to be unknown, then 
the detection process fails to materialize; if they are incorrectly 
assumed, the consequent detector performance can be absurd. 

Distribution-free methods of signal detection can be em- 
ployed whenever the underlying signal and noise distributions are 
unknown.   This can occur, for instance, in a jamming or counter- 
measures environment, or possibly in less hostile circumstances 
where the lack of physical knowledge, or where a  priori knowl- 
edge of physical considerations indicates uncertainties in data 
statistics in either a temporal or spatial sense. 



The study reported here involved a number of distribution- 
free tests which offer some promise of improved performance 
under circumstances such as those previously discussed.   Informa- 
tion related to the required data processing, distribution-free de- 
tector characteristics, and comparison of distribution-free detec- 
tors and classical detectors is presented.   The physical or tactical 
considerations related to the choice of a distribution-free detector 
for any particular application is not discussed and must be con- 
sidered at some later time.   Indeed, the relation is strengthened 
and generalized by the avoidance of particular and restrictive 
applications.   Specific radar systems are not considered but, 
instead, a general approach is used. 

The general approach consists of treating the radar target 
and other factors external to the radar system proper as a 
"transmission medium" through which the desired signal is not 
only received but is obscured by noise.   The signal might result 
from the target's reflection of radar energy derived from the elec- 
tromagnetic waves from the radar transmitter, or the target itself 
might be the primary energy source.   The noise might be additive 
such as atmospheric noise or artificial interference, or might con- 
sist of additive as well as signal-perturbing components.   Three 
models are presented. 

Detection is accomplished by means of a device which re- 
ceives known pure noise, possible signal (PS) data, and/or arti- 
ficial noise, and from these inputs "decides" (YES or NO) whether 
or not a signal is present.   In making this decision, the detector 
is capable of producing two types of erroneous outputs:   (1) false 
alarm (FA), if NO signal is present and it decides YES; and (2) 
false dismissal (FD) if YES a signal is present and it decides NO. 

The probability that the detector will produce a false alarm 
(PFA) will be designated a; ß will denote the probability that the 
detector will produce a false dismissal (PFD). 

The perfect detector, which would produce a = 0 and ß = 0, 
has not yet been constructed.   However, there is considerable 



interest in the so-called ideal detector, which minimizes the prob- 
ability of an error, either FA or FD 

pß + (l-p) a 

where p is the a priori  probability that a signal is present.   To 
construct the ideal detector it would be necessary to know the 
probability p. 

Interest will be directed here to the distribution-free detec- 
tor which in a subsequent section will be defined and compared with 
the uniformly minimum PFD detector which, for fixed PFA   a, 
minimizes PFD ß.   It is first necessary to consider some of the 
statistical properties of pure noise and of noise-plus-signal. 

B. STATISTICAL PROPERTIES OF NOISE AND SIGNAL 

TIME 

Throughout it is assumed that 
the PS data received by the de- 
tector consist of discrete ob- 
servations Ij, J2 , * * *, Xn of a 
continuous time process at 
times tj,  t2, • • •, tn; and that 
the ^'s are measurements of 
voltage, current, power, etc. 
Further, the following restric- 
tions will be imposed on the 
succeeding analysis. 

1.   Jj,  Z2.-" 
variables; 

J^ are statistically independent random 

^11 ^2 »' '' > ^n have a common strictly increasing continu- 
ous cumulative probability function (cpf) F such that F(x) = 
P(JiSx). 

(It is clear from the definitions that a cpf F is mono- 
tone non-decreasing so that ir(-<«) = 0 and F{+'x>) = 1.) 



3.   If the PS data are pure noise, then F = F0 ; if the PS data 
are noise-plus-signal, then F - Fi ^ F0. 

The first two assumptions are equivalent to the statement 
that X1!- • •, Xn constitute a random sample from a population with 
cpf F.   More specifically, assumption 2 states that the observed 
process is stationary or time-invariant.   Under certain circum- 
stances this assumption may not hold for long periods of time, but 
should be approximately valid for relatively short periods. 

Assumption 1, the assumption of independence, which is 
valid in some situations, also represents an approximation in many 
real situations.   The approximation will be quite good if, for 
example, the continuous time process is a normal or Gaussian 
process in which the covariance function decreases to zero rapidly 
relative to the time intervals ( tt - t,^) between observations. 

Assumption 3 is, of course, essential to the whole concept 
of statistical methods in detection.   If the statistical properties of 
noise and noise-plus-signal are not different,  then it will not be 
possible to design a detector using statistical procedures except 
with the undesirable property that a + ß = 1, i.e., with (PFA) 
= l-(PFD). 

As previously mentioned,  the detector will have as inputs 
under certain circumstances not only PS data, but also pure noise 
as well as artificial noise.   The pure-noise observations will be 
represented as   )\,   y?'*""'   ^-  and will also satisfy assumptions 1 
and 2 and, of course, assumption 3 with F = F0 .    Further,  when- 
ever PS data and pure noise are simultaneously available,  they will 
be assumed statistically independent. 

In order to facilitate computations or to achieve certain 
exact PFA values a,  it will sometimes be feasible to introduce 
artificial noise observations k\ ,  '2 , • • • ,   . ■  •    These random vari- 
ables will be assumed to satisfy assumptions 1 and 2 and to have 
some continuous cpf H, which is, in general, not equal to F0 nor 
to f*!. 

With these preliminary statistical considerations it is now 
possible to introduce the three major statistical models of detectors 
to be considered in subsequent sections. 



C. THREE DISTRIBUTION-FREE DETECTOR MODELS 

Before proceeding to a study of distribution-free models 
one should point out that in the event that both ^0 and Fj are known, 
and PS data J^ • • •, Xn are available, it is possible from well- 
known statistical considerations to design a uniformly minimum 
PFD detector, i. e., one which for fixed PFA a minimizes PFD ß . 
Of course, such a detector would not in general have this minimiz- 
ing property for other   ^'s and Fl 's and, hence, would not be 
practicable for use except when the noise and noise-plus-signal 
cpf's are approximately F0 and i^ , respectively. 

Detectors whose performance (PFA, etc.) does not depend 
on a specific fixed continuous F0 will be called distribution-free 
detectors.   The models of distribution-free detectors to be studied 
here are based on three reasonable types of statistical situations: 

MODEL I:      The pure-noise cpf F0 is known and there are avail- 
able PS data Ji, 
unknown. 

Zo Xn whose cpf. is 

MODEL 11:     Both the cpf's F0 and Fi are unknown, but there are 
available PS data sample X^, Z2, • • •, Xn  and pure- 
noise sample 1^, • • • , Yn.   (This model was primarily 
developed by J. Capon; see reference 1 in list at end 
of report.) 

MODEL HI:   F0 , F1 and a pure noise sample a.re not available, but 
the scanned regions can be divided into sub regions 
and each PS data observation can be classified accord- 
ing to its subregion of origin as follows: 

1st Subregion: ii ' X 12' ■hrt 

2nd Subregion: 21  ' X 22» z. 

k^  Subregion: X 
■] lv X Ten-. 
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Sample cpf (or four observations. 

In making decisions on the 
basis of Models I, II, and HI, 
it is customary to introduce the 
well-known statistical concept 
of sample cpf.   For the obser- 
vations JL J2, X„ , the 
sample cpf Fn is a step function 
such that Fn{z) = i (number of 
J's - 2) for all 3, as illus- 
trated here for n = 4. 

In terms of the sample cpf's the basic approaches of the 
three models are as follows. 

1.   A Model I detector compares the PS sample cpf Fn with the 
pure-noise cpf F0 and decides YES if and only if Fn is "too 
far" from F0.   Essentially, each different Model I detector 
uses a different definition of "too far." 
veloped more fully in Section II. 

These ideas are de- 

A Model II detector compares the sample cpf Fn of the PS 
data Jx, • • •, Xn with the sample cpf Fm of the pure-noise 
observations Yi, ^2»' * • > Ym , and employs extensions of the 
ideas mentioned above for Model I.   In Section III this is 
developed in more detail. 

3.   A Model in detector compares the sample cpf's irn1, 
^2 »* *' >  Fnk of the observations from the k subregions. 
This model is treated in more detail in Section IV. 

Before discussing the three models in detail it seems worth- 
while to evolve a formula for producing distribution-free detectors. 



D. CHARACTERIZATION OF A USEFUL CLASS OF DETECTORS 
Paralleling known statistical techniques, one can character- 

ize the class of Model I detectors by imposing a natural restriction 
on the PFD ß.   Note first that if both the pure-noise cpf F0 and the 
noise-plus-signal cpf i^ are normal (or Gauseian) cpf's, then it is 
known (see Section 11 D) that for each PFA a, ß = ß (Fo , ^i ) depends 
only on the function -^(^i-1). i- e., the composition of F0 and the 
inverse,   F-^1, of i^.   Extending this idea to the distribution-free 
case one makes the following definition. 

Definition J.     A detector is called SDF (strongly distribution- 
free) if for each PFA a, each pure-noise cpf J0, and each noise- 
plus-signal cpf -?!, the PFD, ß = ß (F0, F1 ), depends only on the 
function .^(^i"1) for all strictly monotone continuous cpf's F0 and 
F} .   This would mean, for example, that an SDF detector would 
for each fixed PFA a have the same PFD ß in both of the cases 
illustrated.   This so since in both of these cases Fj = i^0

2and 
FolF^iu)) = ui for all u. 



Further one needs 

Definition 2. A Model I detector is symmetric if its deci- 
sions do not depend on the chronological order of the Jj, • • •, Zn . 
(Of course, such a detector is not sequential.) 

From the statistical results of Birnbaum and Rubin2 and 
those of Bell3,     it is known that 

Theorem ?.      An SDF symmetric Model I detector must base 
its YES-NO decisions on a statistic of the form 4)[/0 (JJ, • • •, 
F0 (Xr_)], where ^ is a symmetric function and F0 is the known con- 
tinuous pure-noise cpf. 

Table 1 gives some examples of SDF symmetric Model I 
detectors, with J(l) < 1(2) < • • • < x{n) representing the ordered 
values of X^ X2,"', Xn . 

Table 1.    Some SDF Symmetric Model I Detectors 

Name of 
Detector 

Decision YES 
iff (if and only if) 

Kolmogorov max max F. M—-l-^M > Ax(n,oi) 

Fisher  TT -2 2 In F0(X{) <d2(n, a) 

U 2   o(X) <d3(n,a) 

Sign C'n F nfa^ip)) > d^n, a,p) 

Sherman S1, r0(x{i))-F0(x{i-i)) 
1 

n+T > d5(n, a) 

For Model IT detectors it is feasible also to impose the SDF 
condition, i.e., that ß {F0 , Fj ) depend only on f0{F1~

i).    However, 
in giving the characterization of Model IT detectors one must recall 
the concept of ranks R{Xi), • • •, R{Xn); R{}\), • " , R{Ym) in the 
combined sample. 



. 

Example J.     If the pure-noise observations are Y1 = 2.1, 
72 = 3. 2, 73 =0. 9, and the PS data are Zi = 0, 8, A'2 =2,5, Z3 -1.6, 
J4 = 3.1, then one has 

1. as order statistics for the 7-sample 7(1) = 0.9,   7(2) = 2.1, 
7(3) = 3.2; 

2. as order statistics for the 7-sample 7(1) = 0. 8, 7(2) = 1.6, 
7(3) = 2.5, 7(4) = 3.1; 

3. as the order in the combined sample XYXYXXY ; and, 
hence, 

4. that the X's have ranks 1, 3, 5, and 6 in the combined 
sample, while the 7's occupy ranks 2, 4, and 7.   More 
specifically, R (Xi) = 1, Ä(72) = 5,  ^(Jg) = 3, R (Xj) = 6, 
Ä(71) = 4, Ä(72) = 7,   .(73) =2. 

Further one needs the definitions: 

Definition 3-     A Model II detector is a rank detector if its 
decisions depend only on the ranks of the X's (and/or Y's; and not 
on their numerical values). 

Definifion 4.     A Model II detector is SWS (samplewise 
symmetric) if its decisions depend neither on the chronological 
order of Xi, • • •, Xn nor on the chronological order of 7j, • • • , Tm . 

It is known from statistical considerations3,5 that each rank 
detector is an SDF, SWS detector.   However, one needs the con- 
verse of this result, and to that end must introduce an additional 
restriction.   This mathematical condition first considered by 
Scheffe5,6 is satisfied by all of the Model n detectors known to the 
author; but the full significance of the condition is not evident to 
the author. 

Definition 5-     A Model 11 detector is a Scheffe detector if its 
decisions are based on a statistic T = 7(7'!, • • •, Xn ; Y-^ ,• • •, Ym) 
such that the boundary of the inverse image T~l{B) of each Borel 
set B has probability 0 with respect to each continuous (power) 
measure. 



This Scheffe condition is quite complex, and need not con- 
cern the reader other than as a condition to guarantee the following 
theorem. 

Theorem 2-      An SDF,   SWS Model II Scheffe detector must 
be a rank detector, i. e., must base its YES-NO decisions solely 
on the ranks of the Xi,"', X^ and ^i, • • •, 7m in the combined 
sample. 

Typical examples of Model n rank detectors are given in 
table 2. 

Name 

Table 2. 

Decision:    YES    iff 

Cramer-von J Fn{s) ~Fn(3)\   d 
'nFn{z) + mFjs) 

Mises n + m 
> di 

Mann- 
Whitney- 
Wilcoxon 

n Ä(Ji) > d2 

For a Model HI detector one recalls that there are available 
PS data from each of k subregions; 

^11'   ^12''   '' ^l,nj 

Ä21,   X22!" ' >   X2,rj2 

^kl'   ^kZ*' " > X M, 

Model in detectors can be characterized (as can Model 11) 
by requiring the SDF, SWS,  and Scheffe condition. 

10 



Theorem 3.      An SDF,   SWS Model III Scheffe detector must 
be a rank detector, i. e., must base its YES-NO decisions solely 
on the ranks Ä(Xii), ■• •, R^Xk n, ) of the samples from the ft sub- 
regions. 

Typical examples of Model in rank detectors are given in 
table 3. 

Table 3.   Some Model m Rank Detectors 

Name Decision:    YES;    iff 

Kolmogorov FnAx) -f(x)\    > d1 

k 
max   2   n % 

where F = N'^ntFr,. and N = Zn, 

Kruskal- 
Wallis 

12 Äi 
2 —   - 3 {N+l) > d2 N(N+i)    m 

where ßi = SÄ(Jif) 

Mosteller- 
Tukey 

Length of last run > d3 

Before summarizing this section on characterization one 
should make two relevant comments. 

1. Whereas the rank detectors correspond to a large class of 
2-sample and ?c-sample statistics in common usage, one 
important class of detectors has been omitted.   These are 
the Pitman type, which are not rank detectors as defined 
here. 

2. In subsequent sections artificial noise will sometimes be 
introduced into the Model II and Model HI detectors in order 
to achieve previously stated aims.   For Model II, the in- 
dividual PS data observations Jj, • • •, J,-  and the individual 

* Their statistics are discussed in ref. 7 and in rel.  8, p. 489. 

11 



pure-noise observations Yh ■ ■., Y^  will be replaced by that one of 
the artificial noise observations Wl, W2," ', W_v {N-n +m) with the 
same rank.   For example, if I2 has rank 5 in the combined 1-7 
sample then it will be replaced by that ^9 iff W9 has rank 5 in the W 
sample.   Thus, the rank ordering of the transformed observations 
is exactly that of the original observations.   Consequently, a de- 
tector which bases its decisions on the ft^'s is also a rank detector. 
Analogous statements are also valid for Model HI detectors.   These 
ideas are treated in more detail in Sections in and IV. 

Table 4 summarizes the results of this section. 

Table 4.    Summary for Model I, II, and III Detectors 

Model I Model II Model III 

Cpf's 
known 

Pure-noise 
cpf  i^o 

None None 

PS data: PS data: Regional PS data: 

^'1, ' • * .   Xn ■^1»' ' * J   Xn •^11 >   ^12.'' ' > Xl,ni 

Data 
available 

Pure-noise data: 

^1, * ' • )  Ym 
X2U   ^22' " ' ' ' ^2,n2 

Character- SDF, symmetric SDF, symmetric SDF, symmetric 
ization Scheffe Scheffe' 
assumptions 

Structure of h FoiXJ,-", ^2 Rilr),---, 03 R( ^11) > *'' > 

detector 
statistic - 0 {■'-')] FA Y)\ R  i :^)i 

Since the number of statistics having the structures indi- 
cated is infinite for each model above, some method of narrowing 
the classes of possibilities should be devised.   This is treated in 
the next section. 

12 



E. GOODNESS CRITERIA FOR DETECTORS 

Since the number of possible detectors is infinite it would 
seem reasonable that not all of them are equally "good. " Conse- 
quently, many of these possible detectors can be eliminated from 
consideration by the imposition of reasonable goodness criteria. 
In other words, consideration will be restricted here to those de- 
tectors ■which satisfy one or more practical, reasonable goodness 
criteria. 

Since a detector is essentially a decision-maker, the ulti- 
mate objective is the design of a detector which minimizes loss in 
some appropriate sense.   The losses in the given models are, of 
course, of two possible types: 

L(FD), the loss incurred by an FD (false dismissal), i.e., 
by deciding NO when there is signal present; and 

L(FA), the loss incurred by an FA (false alarm), i. e. , by 
deciding YES where there is only pure noise. 

If the detection process is to be repeated in a large number 
of locations or for a large number of times in a given location, 
then (as is assumed throughout this work) statistical considerations 
such as expected loss or risk, PFA a, PFD ß, etc. , are important, 
and some consideration of 

p,  the  i pr i or i probability of noise-plus-signal, is 
necessary. 

As previously mentioned the most desirable detector would 
be the 

1.   perfect detector, for which a =0 and /3 = 0. 

Of course, such a detector rarely, if ever, exists.   How- 
ever it is possible to achieve   a =0 by always deciding NO; or /3 = 0 
by always deciding YES.    These are 

13 



2. trivial detectors. 

A more practical detector can be obtained for large classes 
of pure noise and noise-plus-signal cpf's if p,  L(FD) and L(FA) 
are known.   Such a detector is a 

3. Bayesian detector, which minimizes the risk 

pß L(FD) + (1 -p) a L(FA). 

In the event that the loss function L is not known or if 
L(FD) = L(FA), one may settle for an 

4. ideal detector, i.e., one which minimizes p/3 + (1-p)a. 

In many practical cases, of course, neither p nor the 
losses L(FA) and L(FD) are known, and one is therefore led to 
criteria based solely on PFAa and PFDjS.   From one point of view 
the "best" such detector is the 

5. uniformly minimum (UM) PFD detector, which, for fixed a, 
gives minimum PFD ^3 for each noise-plus-signal cpf F1. 

It is well known from the Neyman-Pearson result that for 
each fixed pure-noise cpf F0 and noise-plus-signal cpf F^ , there 
exists a detector which for fixed a minimizes ß.   However, in 
general, no one detector will minimize ß for a "large" class of 
cpf's F0 and Fl ; and a uniformly minimum PFD detector will exist 
only in special cases.   Hence, one needs other reasonable goodness 
criteria. 

A detector D is called an 

6. admissible detector if there is no other detector with uni- 
formly smaller ß, i. e., if for each other detector Dg there 
is some pure-noise cpf F2 such that ß{D1, F2 ) ^ ^(.Dg. ^2 )' 
an 

7. unbiased detector if a + /3 ^ 1 for all pure-noise cpf's F0, 
i.e., if P(YES|pure noise) s P(YES | noise-plus-signal); 
and a 

14 



8.   consistent detector if for each fixed PFAcv, lim/3 = 0 as the 
sample size(s) increase(s) without bound. 

Criteria 6, 7, and 8 are quite reasonable.   If one detector 
has smaller ß than a second detector under all circumstances, then 
one would prefer the first detector.    Hence, admissibility is a 
reasonable property to require of detectors. 

Also, it seems reasonable that one would want to restrict 
consideration to detectors which, for fixed a, have increasingly 
small PFD/3 as the quantity of data increases. 

Finally, as is the opinion of many who engage in applications 
of statistics, it seems desirable to have the detector decide YES 
more often when there is signal than when there is only pure noise. 
Such a detector is unbiased. 

Up to this point it has been seen that 

a. perfect detectors rarely, if ever, exist; 

b. trivial detectors can always be constructed; 

c. Bayesian and ideal detectors require specialized 
a priori knowledge; and 

d. uniformly minimum PFD detectors exist only in special 
cases. 

Further, it can be shown that the requirements of unbiased- 
ness, admissibility, and consistency neither reduce the class of 
possible detectors to a "reasonable" number nor provide criteria 
for comparison.   Consequently, one is not in a position to construct 
a "best" detector at this time; nor can one on the basis of the pre- 
ceding criteria make statements of the form "detector I}1 is 50 per 
cent better than detector Z^- "  In an attempt to satisfy this need one 
introduces the following two concepts: 

9.   Detector Dj is max-min-jS better than detector B2 for pure- 
noise cpf class Ji - \F0]  and noise-plus-signal cpf class 
S = {JjJ  if, for each F0 inJJ, 

15 



sup/^j)   s   supi3(D2) 

and 

ivdß{Di)    s  inißiPz) 

where the suprema and infima are taken over the class S of noise- 
plus-signal cpf s. 

The rationale for this criterion (essentially conceived by 
Chapman,9   and used by Bell, Moser, and Thompson    ) is as follows. 
If detector D^s best performance is better than detector D^s best 
performance for specified reasonable classes wM = \F0]  and 
S = |.F\! and if detector D-^s worst performance is better than de- 
tector Dg's worst performance for these classes, one says that de- 
tector Di is "better" than detector D2 (for these classes).   Of 
course, this rating of detectors depends explicitly on the classes 
chosen; and, further, one suspects that only in special cases will 
both sup jS^)   <   sup/3(.D2) and inf 13(0])   ^   inf ß{D2). 

The second of these two concepts is that of asymptotic rela- 
tive efficiency.   Any detector of "feasible" design can be expected 
to have good performance when there is a strong signal.   Conse- 
quently, it seems reasonable to compare two detectors on the basis 
of their relative performances in the presence of increasingly weak 
signals. 

10.   The asymptotic relative efficiency (ARE), A (X)j, i?2) of de- 
tector Dj with respect to detector I}2, is defined to be the 

n(D2) limit, lim ——— , of the ratio of their sample sizes as 
n^i) 

fixed a and ß are maintained as the signal strength tends 
to zero, i.e., as Fj tends to F0 . 

This statistical concept (often attributed to Pitman7) has 
been recently treated by a large number of authors.11"18 In order 
for the limit to exist, be unique, and be independent of a and ß, a 
large number of regularity conditions are needed.    (These are men- 
tioned in Section II D.) Further, although one can make statements 
of the form "Di is 50 per cent better than D2" on the basis of ARE, 
the ARE depends quite heavily on the pure-noise cpf F0 and the 
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manner in which the signal tends to zero, i. e,, the manner in 
which the noise-plus-signal cpf Fl tends to F0 . 

Consequently, in order to apply criterion 9 and rank a given 
set of detectors, or to apply 10 and assign a number to each detec- 
tor, one must specify classes of pure-noise and noise-plus-signal 
cpf's. 

Considerations such as these lead one to consider detectors 
whose performances are the same for "large" classes of pure- 
noise and noise-plus-signal cpf's.   Such detectors are strongly 
distribution-free; one repeats the definition of Section ID. 

11. A detector is called an SDF detector if for each PFA a, 
each pure-noise cpf F0 , and each noise-plus-signal cpf iTj, 
the PFD, ß = ß{F0, F1 ), depends only on the function 
F0 (i^

-1) (for all strictly monotone continuous cpf's F0 and 

^i )• 

12 Very recent statistical results of Bell and Doksum    can be 
adapted to yield two additional goodness criteria for detectors. 

Let \Fe] be a class of noise-plus-signal cpf's such that 
lim   F0 = F0    

= F0, the pure-noise cpf. 
e-e0 "      0 

12. A detector D^ is said to be a locally minimum (LM) PFD de- 
tector for the class   [Fg]   above, if there exists e > 0 such 
that the PFD ß^, F0) =2 ß{B2, Fe ) for all other detectors 
Lz and all 9  satisfying 

10 - 0O | < e . 

Quite often it is impossible to design such a detector and, 
for a given class \Fe\  of the form above, one may settle for an 

13. almost locally minimum (ALM) PFD detector, which is a 
detector whose YES-NO decisions are based on a statistic 71' 
satisfying: for every positive 6 and r/, there exists a positive 
e such that Po(|r' - T{e)\ > t)) < ö whenever  le  - 0O|< e, 
where, for each 6 , T(6) is the statistic of the uniformly 
minimum (UM) PFD detector for pure-noise cpf F0 vs. 
noise-plus-signal cpf Fg. 
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It will be seen in Sections IIDl and HIE 1 that for SDF de- 
tectors and families of noise-plus-signal cpf's satisfying certain 
regularity conditions, one can develop explicit formulas for the 
LM PFD and ALM PFD detectors. 

Before beginning a detailed study of the detector models one 
should mention that there are certain practical considerations, 
e.g., those of equipment design, and those of calculation and tabu- 
lation of the appropriate statistical distributions, which lead one to 
consider detectors which violate some of the goodness criteria, 
i.e., detectors which are less "optimal" and more "tractable. " 

One is now in a position to study the detector models in 
more detail. 
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SIGNAL TRANSMISSION 
MEDIUM 

NOISE 

PS DATA 

'1. 
DETECTOR 

IPURE-NOISE! 
i     CPFJ^o 
i    KNOWN 

—OYES (SIGNAL PRESENT) 
—O NO (SIGNAL ABSENT) 

COMPARE Zi , • • •. J„   AND ^o 

II. MODEL I DETECTORS 
As one recalls from Section ID, a Model I detector is one 

for which there are available both the known pure-noise cpf F0i 

and PS data I'i, X2,- • • , Xn .   The decision-making process then 
consists of comparing the PS data and F0 and deciding YES iff they 
are in some sense "too far" apart.    Further, with the imposition 
of the very reasonable (Section ID) SDF condition one finds that the 
SDF Model I detector must base its YES-NO decisions on statistics 
of the form 0 [.F0 (Ix), • • •,  F0{Xn)]. 

Following the "natural" divisions of SDF statistics one con- 
siders three classes of Model I detectors: 

1. Sample cpf (SDF Model I) detectors, which employ statistics 
based on differences of the PS data sample cpf Fn  and the 
pure-noise cpf F0 ; one recalls that Fn (y) -^ (number of 
X 's < y), the sample proportion of J's which are less than 
or equal to y. 

2. Run-block (SDF Model I) detectors, which deal with the 
number of PS data values Xj, • • •, X-  which fall in certain 
preassigned intervals and/or the relative spacing of these 
values; and 

3. Rank-sum (SDF Model I) detectors, whose decisions are 
based on sums of percentile ranks, F0 (Xf), of the 
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In the next three sections, general formulas and specific 
examples of the common types of Model I detectors are given.   In 
later sections the various detectors are compared in terms of the 
previously mentioned goodness criteria — PFA a, PFD/3, ARE, 
etc. 

A. MODEL I SAMPLE Cpf DETECTORS 

The detectors discussed in this section are primarily based 
on generalizations and specializations of three well-known distri- 
bution-free statistics whose formulas are given below. 

1. Kolmogorov-Smirnov Detector 

D(n,r, *) = sup 
x 

\Fn{.x) -F0ix)\  s/*{F0{x))\ (1) 

The usual specializations and variations of this statistic are 
as follows. 

Dr= sup \\Fn(x) - FQ{x)\\ 
x    y I x 

max 
i 

max | F0 (J(i)) ~ , ^ - F0{m))\ [ (2) 

where J(l) s X{2) s . • • < j(n) are the ordered values of the PS 
data Zi, X2 , • • •, Xn; 

The two one-sided versions: 

D\, = sup  [ Fn{x) - =o(.r)] = max [^ - F0 (J(i))l (3) 

D-n = sup \y0(x) - Fn (x)]= max IF0 (X(i)) - ~\ ; (4) 
i 



and 

x 
'    =sup   [\Fn{x) - F0(x)\  {VF0(x)-\ [\ - F0(x)-\\h) 

{FQ{X(i)) [1 -r0(J(i))]}''l(5) max   llV- F0{X{i)) 

which is designed to be sensitive to deviations in the tails of the 
pure-noise cpf F0. 

2. Cramer-von Mises Detector 
¥ {n,v,<a) = j\\Fn(x)-F0(x)\    J*{F0{x)]\    dF0{x)   (6) 

The common versions of this statistic are: 

n u2
n = n J [^n(^) - F0{x)f    dF0(x) 

2i-l 
Foim) 12n     Z~   |    2n 

The two one-sided versions 
OO 

5/+n= n f [Fn{x) -F0{x)]   dF0{x) 

(7)' 

(8) 

and « 
W~n= n   f [F0 {x) - Fn{x)]   dF0(x) 

_ OO 

are related by W\= -{/"„= n-r -— > F0{Xi) and, hence 

both equivalent to the rank-sum statistic [7 =— X ^0 ^^ 

is treated in the following section. 

(9) 
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^rrn   f[Fnix) F0{x)]2 \F0{x) (1 - ^0(^)) ^o(^) 

1 
i=l 

\(2i-l) In .f0{X{i)) + [2{n-i) 

+ 1] ln[l -  F0(X(i))\\ (10) 

which corresponds to D'n above and is designed to be sensitive to 
deviations in the tails of the pure-noise cpf F0. 

On examining the preceding formulas one sees that these 
statistics are simply generalized distances between the PS data 
sample cpf Fn and the pure-noise cpf i^ .   The Kolmogorov-Smirnov 
class of detectors is concerned with the maximum of certain func- 
tions of the differences Fn - F0 , while the Cramer-von Mises class 
of detectors base their decisions on the integrals of certain func- 
tions of Fn - F0 .   The one-sided versions of both classes of statis- 
tics are natural to consider if the noise-plus-signal cpf F1 < F0 or 
if Fj > F0. 

_ i 
il      2 

F0{x) [1 -  Ao(-r)] j     diverges 
as x tends to + ^, i.e., as ^o(^) tends to 0 or 1.   For this reason 

Fn{x) - F0{x)\    \FQ(x)  [1 - F0{x)] 

will tend to be large if the absolute difference   l-M^r) - i^^)!   is 
large for very small .ror for very large x, i.e., differences in 
the tails of F0{x) are magnified.   Hence, detectors based on equa- 
tions 5 or 10 are sensitive to noise-plus-signal cpf's F1 which 
differ from the pure-noise cpf i^, in the tails. 
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^x *- x 

3. Sign-Quantile Detector 

Before giving numerical examples of the use of the detectors 
just described, one should consider the simplest sample-cpf detec- 
tor, which is based on the sign statistic and is historically, per- 
haps, the first distribution-free statistic. 

In its rudimentary form a sign detector (sometimes called 
a threshold detector) is one which decides YES if the number Q' of 
PS data observations Jj, • • •, In which fall below some preassigned 
threshold UF0) = ^0

_1(p) is "too large. "   That is, 

n n 

«• = J e [M^o) - ^] = zLe [P - Wi)] 

where e is the degenerate cpf such that 

e(2) 

0 if s- < 0 

1 if 5- s 0 

A cursory examination of the situation indicates that in the 
pure-noise situation approximately lOCto per cent of the Xx,- • • , Xn 

will be equal to or below the threshold ^(-^o); and, of course,  ap- 
proximately 100(1-p) per cent of these observations will exceed 
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£p(F0).   Consequently, §'will be too large if 

Fo(^p(F0)) - Fn(ip(F0)) = p- F^FoHp)) 

is too small, since nFn [FoHp)} is the number of Jj, • • •, Xn which 
are less than or equal to £,p{F0) = Fj\p), the pthquantile of F0 (see 
illustration.  A). 

The sign detector, although it will be seen to have certain 
good properties, does not provide a desirable situation for dis- 
tinguishing between pure noise and noise-plus-signal if F^\p) = FöHp), 
In both the pure noise and noise-plus-signal cases, the J's will then 
fall below the threshold with the same probability, and elementary 
calculations with show that a + ß = 1,  i.e. PFA + PFD = 1 (see 
illustration, B). 

F(x)                            A. 
i k 

F /^ 
/        ** ^ /    s 

P' 
"Ti/   Fi 

„0^^    s  1 ^^^* 
**        i 

_m-   —■ 

F{x) B. 

I      IpCfo)^^"1^) 

i 1 

Fo/^ 

p 

__, „ 
^-^ i             k 

^P   (Fo)^^'1!^) 

•► X 

This leads one to consider de- 
tectors whose decisions are 
based not on a single threshold 

M^o) = FZ\p), but on "thresh- 
olds" 1^^),  la2(Fo)>---. 
£<? (-^o)» as diagrammed. 
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Let 0 = g0 < gj <  g2< • • ■  < g,_1 < o^ = 1 be an arbitrary 
finite sequence of probabilities.   Then 

(^oX). ^iq,) | . (Fo-HqJ,   F^) \, ,  (^"Hj. ^(g^) 

is a partition of the real numbers into s nonoverlapping intervals 
on the real line.   If there is only pure noise, i. e., if F - F0 , then 
for the ith interval Jt= ^(q.^),  F;\q{)\, 

1. its probability is PFo{Ji) = g^ - gi_1 = Pi 

2. the expected number of PS data points X-^,- • •, Xn to fall in 
the interval is n(g.- g.^) = np. 

3. the actual number of PS data points in the ith interval 
nt = n[jn (^(g^) - ^(Jo'1(^.1))] ; and 

4. each of quantities | F^F^iq.)) - ^(^(g^)) - 
l        "t I 

(g;. - g^j)     =   ~ - pf    is in some sense a measure of the 

deviation of the PS sample Jj, • • •, Jn from F0. 

For these reasons one is led to the following generalization 
of the original sign statistic. 

For the sign-quantile detector, 

(3(n; gj. *' *> gs.j; r; *) 

s r 

where for i = 1, 2, • • •, s , 

m = n\Fn(F0-\qi)) - F^F^iq^))] and p. = g. - g^. 
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On setting s - 2, c^  = p, r ~ I and 4' = 1, one obtains 

a.   TWO-SIDED SIGN DETECTOR 

Q(n;p; 1; 1) = 2 
ri] 

- p = 2 -    V  qp-^oUi)]^ 

2_ 

i=l 

)'-np (12) 

where §' and e are,  respectively, the sign statistic and degenerate 
cpf defined above and given below. 

b.   SIGN DETECTOR 

II 

i = l i=l 
(13) 

(Note:   When p = 0.50,   Q'^ is sometimes referred to as the 
median statistic.) 

The most common statistic for s — 2, i.e., for more than 
one "threshold, " is the following, which is sometimes called a 
"chi-square" statistic because of its limiting distribution. 

c.   EXTENDED (MEDIAN) DETECTOR 

1 
i = l 

ini-npt) 

np. , which is the specialization of (14) 

C (n; Oj, • • •, qa_f r; *) for which r = 2 and * (u, u) = Nn/v. 

26 



In the event that p.= 1/s or, equivalently, g. = i/s,  then 
one has 

= -!' ns L-i 
,2 = £ Y 

n (15) 

From one point of view the extended median Q gives undue 
weight to intervals (^(^-i),  ^0'%}] = {k^oh  ^(^o)] for 
which p. - q. - <J .^is small because of the denominator np-   In an 
attempt to adjust this situation one considers a statistic Q with 
r = 2, and v^(u, u) =(N/17+ \fU )' 

d.   MATUSITA DETECTOR 

1 
i=l 

Q = 4n   /_   Wni/n  + VÄ- ) = 4 2 
i=l 

2 

\fnJ7n - p 

which reduces in the case p. = l/s to 

(16) 
i=l 

Qs = 8n 1 - (ns) 2 2. N^: 

i=i 
(17) 

Of course, the twelve or so types of Model I sample cpf de- 
tectors above do not in any sense exhaust all of the possibilities. 
However, they do give a more or less comprehensive picture of 
the sample cpf statistics in current use and, hence, of Model I 
sample cpf detectors which should be considered. 

Examples illustrating the computations involved in the use 
of several of these statistics are given below.   Since the normal 
distribution and the Rayleigh distribution are, of course, two of the 
more common noise distributions studied in signal detection, the 
use of the Kolmogorov-Smirnov and Crame'r-von Mises detectors 
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will be illustrated for a pure-noise cpf F0 which is A^O, 1), i.e., 
normal with JU = 0 and cr2= 1; and the sign-quantile tests will be il- 
lustrated for a pure-noise cpf J0 which is standard Rayleigh, i.e., 
^o(x) = ! " cxp(-^2) for x^ 0. 

Example 2-     Consider the following Model I detection 
situation. 

Pure-noise cpf:   Standard Rayleigh, F0{x) = 1 -exp(-x2)(.T s o) 

PFA a = . 05 

PS data:   1. 3,  . 3, . 2,  1. 9,  . 8 n=5 

Dn detector:  Decide  YES   iff 

max 
i 

jmax   FiZii)) '^'^ - F0 (l(i))] j > .5633 

nu2n detector:   Decide   YES   iff 

k+   1   l^1  - -Foim)\   >■46136 12n      .   , 

(Note:   ".5633" is the 95th percentile of the Dr.. distribution 
for n = 5 obtained from ref. 19, p. 431.    ".46136" is the 95th per- 
centile of the nw2

n distribution obtained from A. W. Marshall's 
table,  ref. 20.) 
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Computot/ons 

Basic Computation 
Kolmogorov 

-Smirnov Computation 
Cr imer-von Mises 

Computations 

i 
i/N 
= Fn(X{i)) X(i) 

fo (r(i)) = 
l-exp[X2(i)] Foim) - N I - Foim) 2i-l 

2n [foim)-2^1] 
2 

1 .2 .2 .04 .04 .16 .10 (-.06)? = .0036 

2 .4 .3 .09 -.11 .31 .30 (-.21)2= .0441 

3 .6 .8 .47 .07 .13 .50 (-.03)2 = .0009 

4 .8 1.3 .82 .16 .04 .70 (. 12)2   = . 0144 

5 1.0 1.9 .97 .17 .03 \    .90 (. 07)2   = . 0049 

For the Dn detector 

Dn = max(.04,  .16, -.11,  .31,  .07,  .13, .16,  .04,  .17, 
.03) = .31. 

Since .31 < .5633, the Dn detector decides NO. 

For the nw2
n detector 

nco2n = [(12)(5)]'1 + (. 0036 + . 0441 + . 0009 + . 0144 + . 0049) 

= .0167 + .0679 = ,0846 < .46136.   Hence, thenw2
n 

detector decides NO. 
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The approximate value of Dn can be obtained from the graphs 
of Fn and F0 in the following figure, since Dn is the maximum of the 
absolute value of the differences -fW.r) - F0{x).   From the graphs 
one can see that the maximum difference is attained for x - .3, 
and is Fn{.3) -F0(.3) = .4 -   jl - exp [-(.3)2]!  = .31, 

1.0 

.8 

VI 

PQ 
O 
« .4 

.2 

.2   .3 .5 1.0 1.3      1.5 
x 

1.9    2.0 2.5 

Rayleigh cpf F0 and sample cpf Fn (see example 2,  p. 28). 

Note also that from the table above the values of several of 
the other sample-cpf detector statistics can be computed, as follows: 

From the sixth column. 

D+
n = max 

A 
7" ^oCl^)) 

1    L 

From the fifth column. 

max(.16, .31, .13, .04, .03)=.31 

D'r ~ max ^o (X(i)) - 
i- 1 

max   (.04,  -.11,  .07, 

16,  .17) = .17 
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From the fourth column, 

n 

^""l "   2 F ^(i)N) = f " (• 04 + •09 + • 47 + • 82 + •97) 
i=l 

= 2,50 - 2,39 = .11, and 

W-rr- Ä'V-.ll. 

For an illustration of the use of the sign-quantile detectors 
one can consider the following example. 

Example 3- 

Pure-noise cpf:  i^0 is #(0,1)   (See figure below, in which 
i^o and Fn are plotted,) 

1.0 

VI 

H 

PQ 
O 
K 

i 

y 

t*—\ —     I 

H' 
y^ ? 

v<— \fn 

6 / ft 

f 4 
/ 

, 

^ 

I 

2 
y^ 

-^r A 
0 

-2 5     -2 0       -1 .5     -1 0      i-C .5 

o) 

0        0 

i 

5 |       1 

'.75 ^o 

.0       1 

I 
5        2 0        2 5 

^.50   (^o) = Jo'M.5) 

N{0,1) cpf F0 and sample cpf F   (see example  3,  p. 31). 
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PFA a = . 10 n =20 

(a)   e*. so detector:   Decide   YES   iff    \    £{0 -1^ ^ Q 

20 

1 
1=1 

20 
(b) g'75 detector:   Decide  YES  iff     >     e (.675 - Z^) s 12 

"^^ i=l 
_ 4 

(c) Q4 detector:   Decide   YES   iff   [(20)(4)]"1^ (4ni - 20) s 6. 25 
i=l 

(d)   Q4 detector:   Decide   YES   iff 8(20) [(20)(4)]"i S   ^i 
i=l 

PS data:   .06,   .40,   .09,  1.58,   -.27,  -1.15,   1.68,   -.05,   -1.55, 
1.54,   .55,  2.38,   .81,  -.46,   .32,  1.02,  -.91,  -.78, 
.50,  .11. 

Compofot/ons:     I 25(^o) = "• 675; £ 50(Fo) = 0. 00; ^75(F0) = .675 

Computations Computations        Computations 
X(i) for Q'5 for Q' 

1 -1.55 -' 
2 -1.15 - 
3 -   .91 - 
4 -   . 78 - 

5 -   .46 - 
(i -   .27 - 
7 -   .05 - 

■    7 = Q' 

s .06 + ] 

9 .09 + 

10 . 11 + 

11 .32 + 

12 .40 + 

13 .50 + 

11 . 55 + 

15 ..SI + 

16 1.02 + 

17 1.54 + 

18 1.58 + 

19 1.68 + 
20 2.38 + 

50 

«50W = o.oo 

>    13 

for Q4, Q4 

>   ni=4 

iWJo) =--675 

2)    no= 3 
14 = «.'75 

,-1,^0) =0.00 

■    71,= 7 

£75(.r0) =.675     •r:|7s(f0)=.675 

>    6 n4 = 6 
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(a)   For the Q]SQ detector: Ö.'so = 7 > 6 and the Q\50 detector 
decides   NO. 

(b) For the g'. 75 detector:   Q]15 = 14 > 12 and the Q\75 decides  NO 

(c) For the 54 detector: «4 ^(SO)-1 [(16-20)2 • ,,,. ,„>, 
+ (24-20)2 ] = 2. 00 < 6. 25 and the 
detector decides  NO. 

(d)   For the Q4 detector:   QA  = 

64 = (80)"1 [(16-20)2 + (12-20)2 + (28-20)2 

+ (24-20)2 ] = 2. 00 < 6. 25 and the  Q4 
etector decides  NO. 

'4  = (160) [l - (80)"2 {4Ä+\ß +47 +4ß)] 
: 4. 00 < 6. 25 and the §4 detector decides 

NO. 

In closing this section one should mention two pertinent 
facts: 

1. In none of the cases in Example 3 (p. 31) was the exact 
PFA a attained,  since the exact distributions of the statistics in- 
volved are given by: 

Theorem 4.       If F = F0 ,  (i) §'    has binomial distribution 
with parameters n andp; and (ii) as n tends to infinity, Qs and Q 
both have asymptotically a chi-square distribution with (s-1) 
degrees of freedom. 

The "6" and "12" for §'.50 and Q]15, provide a's of .0577 
and .1018, respectively; a; = . 10 is attainable with these sign sta- 
tistics only through randomization.    Further, for n= 20, the "6.25" 
is only an approximation to the 95th percentile of Q4 and 64 distri- 
butions.    A summary of the distribution situation is presented at 
the end of this section. 

2. Up to this point nothing has been developed which would 
allow one to objectively express a preference of detectors among 
those already considered.    This aspect of the detection problem 
will be discussed in Section D. 
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B. MODEL I RUN-BLOCK DETECTORS 

The detectors of this type are based on the spacings of the 
PS data relative to the pure-noise cpf F0 . 

It is well-known that 

Theorem 5.      If 0 = g0 < gj < • • • < qs_1 < qs = 1, and there 
are n PS data observations, 

(i)    the expected number of observations falling in the interval or 

cell  (ig.^o).  kt^o)] :=(^o'1(g;,:_1).^o'1(gi) 
n{g.-gi_1)=np.axid 

is 

(ii)  for integers h s r, the expected value of the difference of 
"heights"   F0(j(r))   - F0(l{k)) is E\F0(X{r))  - F0(l(k)) 
r-k 
72 + 1 

Hence, when the {n + l)qi are integers, then each of the 
quantities li^ (-? [(^+1) 9^ ])- F0(x [(n+1) q^i])- pA is in some 
sense a measure of the deviation of the PS data from F0.   This is 
also true for the number E of empty cells among the (F0' (<?,.]), 
^o~ (^i)   •   One is therefore led to detectors based on the following 
statistics. 

1. Spacing Detector 

s{n, g1.
- •*. qs^; r. 

s 

*)=   2   [\^(xi(n^)q^)- F0{x[(n + l)q.^) 

P i | *^]7 (18) 

where each (n + l)a. is an integer; 0 = Q<a<---<Q    < o = 1; 
pi = qi- g.-.j.^'CO) = -^ and J(n+1) = °o 

The most common versions of this detector are based on 
the following statistics. 
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o.   SHERMAN DETECTOR 

\ ' 7=1 ' 

n+1 
; and (19) 

b.   KIMBALL-MORAN DETECTOR 

S'n = S 

T 2      ^+1 

(J(i)) - ^(^i-l)) (20) 

The following example illustrates the computations involved. 

Example 4.     Pure-noise cpf: F0 (x) = 1 - exp(-x/4)   (x -0), 
PFA a = .01, n = 5 

PS data:   1.6, 3.8,  .4,  2.6,  .6 

Sn detector:   Decide  YES  iff  Sn > 0.57442* 

5"^ detector:  Decide  YES  iff 5"n   > s(5, .01) 

* "0.57442" is the 99th percentile of the Sn distribution for n = 5, from ref. 21, p. 448. 
As of this writing there ore no published tables of the distribution of 5'n , although such 
tables can be constructed with the aid of high-speed computers.    Hence, s (5, .01) is not 
known. 
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Computations 

i Z{i) F0{X(i)) 

For Sn                       1 

F0(j(i))- Fo(X(i-l)) 

For S'n 

[FoiZii))   -   „ 

0 -oo 0 

1 0.4 .04 |.04 - 0 - .17]  = .13 .0016 

2 0,6 .09 |,09 - .04 - .171  = .12 .0025 

3 1.6 .47 |.47 - .09 - .17|  =.21 .1444 

4 2.6 .82 |.82 - .47 - .17|  « .18 .1225 

5 3.8 .97 |.97 - .82 - .17|  = .02 . 0225 

6 OO 1.00 |l.00 - .97 - .17|  =.14 . 0009 

.80 . 2944 

Therefore 5^ = . 80 and 5'„ = . 29 - . 17 = . 12 

The Sn detector then decides  YES, since . 80 > 0.57442. 

The decision of the <S"n detector depends on the unknown 
s(5, .01). 

2. Empty-Cell Detector 

The second type of Model I run-block detector is the empty- 
cell detector, which, as its name suggests, is based on the number 
of the cells (F0 '

1 (q i_1 ), FQ'
1
 (o J )]   which are empty.   (For this 

detector it is convenient to let s + 1 denote the number of cells.) 

Before giving the general formula for the statistic involved, 
one should note that 

1.    n^ =  n [i^ (V1  (q^)  -  Fn (V
1 (<?;_! ))|   is the number 

,-th of PS observations in the i    cell  Jt 
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2.   e^^o"1^))-^^1^-!))-^ 

0 if Jj is empty 

1 if J-i is occupied, 

where e {s) = 

s+1 

1 if ^ ^ 0 

0 if 5 < 0 
, the degenerate cpf. 

X    e\Fn{F-\qi)) - Fn{F0-\q._1)) 
1=1 

1 
2n 

is the number of 

occupied cells; and since s division points FQ
1
^^ < • • • < 

Fo~\qs) give (s + 1) cells ^ 

s+1 

4. (s+i)-2. ^[^(^(g^-^M^))-^ is the 
i=l 

number of empty cells. 

Consequently, one defines for the empty-cell detector 

s+1 

£(n; g1)---,gs) = (s + l)-   Z  ek^o"1^)) 

FniFoHq^))-^ (21) 

One usually chooses the cells to be equiprobable, i. e. 

a. = — and p. = ; and works either with the statistic 
^    s+l ri    s+1 

s+1 

E   = 
s+l (S+l)-   2    t\FnU-l{j~[) 

1=1      L 
- w -1 i~l 

S+l//     2n 
(22) 

or with the equivalent statistic 

s+1 

E S+1 1 
i=l 

MM^1^)) -^M^i)) -i (23) 

which is the number of occupied equiprobable cells. 
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Since the distribution of E is the one usually tabulated (see 

ref. 21, p. 454 ff), the detection example below will use E. 

Example 5. 

Pure-noise cpf:   i^o is standard Rayleigh, ^o^) = 1 - 
exp(-x2)    (x a 0). 

PFA a = . 01 

PS data: 1.66, 2.06, 3.16, 1.69, 1.33, .45, 3.26, 1.55, 
.05, 3.14, 2.15, 3.98, 2.41, 1.14, 1.92, 2.62, 
.79,  .82, 1.71,  2.10 

E10 detector:   Decide  YES  iff E1Q S 6 (i.e., if six or fewer 
of the ten equiprobable cells are occupied). 

Computations 

To find the boundary points of the ten equiprobable intervals 
or cells one must solve 

1 - exp(-;r2) =p or x = [-ln(l-p)]2   for p = .1, . 2, • • •, .9. 

The cells and the number of PS-data points falling in them 
are as follows: 

i 1 2 3 4 5 6 7 8 9 10 

I 0,.325 .325,.472 .472,. 597 .597, .715 .715,. 833 .833,. 957 .957,1.097 1.097,1.269 1.269,1.517 1.517,  " 

1 1 0 0 2 0 0 1 1 15 

Since four cells are empty,  E1Q = 6 and the ^Q detector 
decides   YES. 

In closing this section one should note 

1.   that the exact distribution of E and the limiting distribution 
of Sherman's Sn are given by: 

li F= F0, then 
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-iM^iMf (a) P{Es+1<r        _ 
J'=0 

and 

(b) Sn is asymptotically F(/Lin, C7„2) 

where jn^ = [n/(n+l)]      which tends to l/e and 

an2 = [2n"+2
+n(/a-l)ra+2]   [(n+2) (n+l)"+2 f-   [n/(n+l)]2"+2 

which is approximated by (2e-5)/ne2; 

2. that in view of the discreteness of the statistic, only a few 
significance levels can be obtained exactly; 

3. that there is a need for a more extensive tabulation of the 
statistic E; and 

4. that there is a need for a "rule-of-thumb" for choosing the 
number s (of division points or (s+1) of cells) for a given 
PS data sample size n in order to attain some preassigned 
goodness criteria. 

In order to circumvent the difficulties above, one can make 
use of the Model I rank-sum detectors of the next section. 

C. MODEL I RANK-SUM DETECTORS 

The detectors of this section are based on statistics of the 
form 

n 
(24) irr"        v   ....... - 

n --i 

{H)=^ 2 tr^Foixj-] 
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where // is a strictly increasing continuous cpf, and //"Hs its in- 
verse.   At first glance it is seen that K(ff) is the mean of the trans- 
formed observations iT1^ (Xj)], • • •, /T1^ (Ar

n)].   In fact, if both 
H and F0 are normal, exponential, or Rayleigh cpf's, thenK{H) is 
of the form a X+ h, i.e., is a linear function of the sample mean. 
(See table 5.) 

Table 5. 

H H-Hu) H-1 [F0 (Ji)] K(H) 

N{ixv a^) 

o-j* (u) +ß1 

where $ is the 
N{0,1) cpf. Niß2, a22) 

+     Mi 
^ M2 

l-e^/Ai 

(x^O) 

■Xl In (1-u) 1-e -x/\. (AiA2)^ 

(3:^0) 

^i/A2) 1 

(.r ^ 0) 

[-Xj In (1-u)]1 l-e-7-2/^ 

(a:2:0) 

V Xi /A2    Xj N/ XX/X2 J 

These statistics are, then, generalizations of the sample 
mean Z; and one might expect such statistics to have properties 
similar to the properties of X in the parametric cases even when 
there is no simple relation between H and F0. 
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♦• X 

»- X 

Consider the situation in 
which the pure-noise cpf i^, is 
above the noise-plus-signal 
cpf F-L, or equivalently, F1  is 
to the right of F0.   In this case, 
if there is noise-plus-signal 
the PS data values Xi, • • •, Zn 

will "on the average" be larger 
than if there is only pure noise 
and one says that the noise-plus- 
signal values are stochastically 
larger.   Consequently, if there 
is noise-plus-signal the {^(^j)} 
are stochastically larger as are 
the {H-l[F0 (Xi)}} , andKiH) = 

- V/^rJoCr,)] .   Hence, in the 
n ^—j 

case outlined above, the K{H) 
detector would decide  YES  iff 
K{H) exceeded a level deter- 
mined by n and a.   Of course, 
the reverse decision rule would 
be employed by the detector in 
guarding against noise-plus- 
signal which is stochastically 
smaller. 

In practice, the detectors are usually based on one of the 
following four statistics: 

(a)   TT   =  -2    2  ln  l/oW] ; (25) 
i=l 

(b)  TT-   =   -2 ^   In   [1 - Fodj] ; 
i=l 

(26) 
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n 

(c)  ^= ~ Z ^o(^);and (27) 

n 

(d)    Z= ^   ^    *"1[i?,o(Xi)]. (28) 
i=l 

Coincidentally, these four statistics result from choosing, 
as E, those distributions which have maximum Shannon information 
over (a1) the right half-line; (o') the left half-line, (c') the unit in- 
terval and (d1) the whole real line, respectively.   Namely, (a") the 
exponential E(x) = 1 - e~x {x ~ 0); (b") the negative exponential, 
H(x) = er, x < 0; (c") the standard uniform H(X) = x, 0 ^ x ^ 1 and 

x 

(d") the standard normal cpf H{x) ~      /       ___ exp(-t2/2) dt. 
-4       N/27 

Thus, there is some intuitive justification for the choice of these 
four statistics, although they seem to be directed toward detection 
situations in which FQ  and F^ do not cross, i.e., in which the 
pure-noise distribution is stochastically larger or stochastically 
smaller than the noise-plus-signal distribution. 

Example 6. 

Pure-noise cpf:     F0(x) = 1 - exp(-.0625 r2)    {x ä 0) 

PFA 0!= .005 

PS data:   3.2, 5. 2,  1. 2,  7. 6,  . 8 (n = 5) 

(a)   TT detector:   Decide   YES   iff 

5 

-2  2,    ^  [FoiXi)]   > 25.2   (the 99.5th percentile of the 
i=l chi-square distribution with 

2n = 10 degrees of freedom). 
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(b) IT
1
 detector:   Decide  YES  iff 

5 

-2  /_,   In  [1 - FoiXi)]    <  2.16   (the 0. 5th percentile of the 
i-1 chi-square distribution 

with 2n ~ 10 degrees of 
freedom). 

1   ^o( (c)   U detector:   Decide  YES  iff  (.2)   ^   FoUi) > .751 
i=l 

(where . 751 is the 99. 5th percentile of the distribution of 
the mean of a sample of size 5 from a standard uniform 
distribution). 

(d)   Z detector:   Decide  YES  iff (. 2)   /.    * Vo (^i)]  > 1.117 
i=l 

(where 1.117 is the 99.5th percentile of the normal distribu- 
2 _ tion with n = 0 and  cr   = . 2). 

Computof/ons 

i X(i) 
FoiKi)) =                          | 
1-exp   [-.0625 X2{i)] In F0{X(i)) ^l/oU^))] 

In [\-F0{X(i))] 
= -.0625 X2{i) 

1 .8 .040 -3.220 -1.750 - .040 

2 1.2 .086 -2.450 -1.365 -  .090 

3 3.2 .457 -  .782 -  .108 -  .640 

4 5.2 .816 -  .203 + .900 -1.690 

5 7.6 .973 -  .027 +1.927 -3.610 

2.372 -6.682 - .396 -6.070 
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^o^'i) =2.372 

^ln j;(J7;) = -6.682 

^«."'[^(Jj)]  =".396 

y In  [1 - F0(Ii)]  =^[-.0625 X2{i)] = -6.070 

(a) TT detector 

5 

-2   2.   ln [Fo{%i)] =13.364 ^ 25.2 Decision:   NO 
i=l 

(b) TT ' detector 

5 

-I In  [1 --^(Xi)]  =12.140   ^2.16 Decision:   NO 
i=l 

(c) U detector 

5 

(.2)    ^   ^o^-'i) = •4744 it  .750 Decision:   NO 
i=l 

(d) Z detector 

5 

(.2)    /^    *"1[iro(Xi)]   =-.0792 if 1.117   Decision:   NO 
1=1 

Very recent results 2 indicate that the statistics of the form 
n 

/1 H'1^ (Xj)] are really special cases of a more general class 
i=l 
of statistics—the "likelihood-ratio" distribution-free statistics. 
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They are of the form 

= s Inft'lJJJi)] (29) 

where h is a. differentiable strictly monotone cpf on the unit inter- 
val, i. e., h is monotone increasing and h{0) = 0, h{l) = 1, and of 
the form 

r,=2j[F0(zi)] (30) 

where J^u) = -—In hn(u) |        , and  |/ja[ is a family of differ- 

entiable,  strictly increasing cpf's with hao(u) = u. 

Detectors based on this more general statistic reduce to the 
TT', TT,  U, and Z detectors when h(u) = l-{l-u)a; ua\ aebu+ c and 
^[*~1(u)-a]j respectively.   Of course, the number of detectors 
of this more general type is unlimited.   However, the most common 
version other than the IT, TT', U, and Z detectors, which intuitively 
seem good for the stochastically larger and stochastically smaller 
cases, is 

Z' -1 
i=l 

$   [F0iZi)]     > which results for h{u) = $ ^V) (31) 

By intuition and/or an 
investigation12 of the method of 
deriving this formula, one con- 
eludes that a Z   detector has 
some optimal properties for 
situations in which the noise- 
plus-signal cpf F1 and the pure- 
noise cpf F0 have different dis- 
persions or spreads.   Exact 
methods of choosing h will be 
discussed in the section on 
goodness criteria.   This section 
will be terminated with an 
example of the application of 
the Z2 detector. 
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Example 7- 

Pure-noise cpf: F0  is Ar(0,4) 

PFA a = . 005 

PS data:   -.472,  -2.180,  6,684, 2.592, 3.332,  2.584 
n - 6 

n 

Z2 detector:   Decide  YES  iff   2.  j*'1 [^o{^)] f   > 18.55 
i=l 

(the 99. 5th percentile of the chi-square distribution with n 
degrees of freedom). 

i 

Computaf 

Zii) 

ions 

F0 (I(i)) ^ [Jo (J(i))] I^CMx^))]!2 

1 -2.180 .1379 -1.090 1.188 

2 - .472 .4067 - .236 .056 

3 2.584 .9018 1.292 1.669 

4 2.592 .9025 1.296 1.680 

5 3.332 .9521 1.666 2.776 

6 6.684 .9996 3.342 11.169 

18.538 = Z2 

Decision:   NO 

* In example 7, $    Uol")] reduces to x/2.    This type of simplification is not possible  in 
general. 
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D. GOODNESS CRITERIA FOR MODEL I DETECTORS 
All statistical goodness criteria for detectors are based 

directly or indirectly on the PFAa and PFD ß.   Usually one fixes 
PFA a and is consequently led to criteria which (for fixed a)  de- 
pend solely on the PFD ß. 

Assuming that both the pure-noise cpf F0 and the noise- 
plus-signal cpf Fi are normal, one finds that for SDF detectors ß 
depends only on (y0/<J1 and (^ -Mo)/0-! > i- e., the ratio of the stand- 
ard deviations and the ratio of the difference of means to cr1. 
Hence, ß can be completely tabulated subject only to limitations of 
computation time and costs. 

The detectors being considered here are all SDF and, hence, 
ß depends only on FQFI

1
 = (i'iiro~1)'1-   However, even with this sig- 

nificant reduction of the possible alternatives, it is impossible to 
tabulate or give formulae for all situations of interest.   Conse- 
quently, a statement of the form "The T-y detector is better than the 
T2 detector" cannot be made without some rather severe qualifica- 
tions. 

In order to make some recommendations as to the relative 
merits of Model I detectors, one must restrict consideration to 
certain special classes of alternatives, as follows. 

1. One-sided Bands and maxmin PFDß 

Based on the statistical 
work of Chapman9 one considers 
for each strictly increasing 
continuous pure noise cpf Fo 
the class 0 (F0 , A) of all noise- 
plus-signal cpf's-Fi such that 
(a) i^ > F1 and 
(b) max [FQ{x) - F^x)^ A, 

x 
where 0 < A< 1. 
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For the class   0 (i^, A), one says a ^ detector is max-min 
PFD better than a T2 detector if ß {T^ A) < ß(T2, A) and £ {T^ A) 
< ß_{T2, A) where ß and ß are, respectively, the supremum and 
infimum of the indicated detectors for the class 0 {F0, A). 

The following curves contain slots of ß vs. Aand^ vs. A 
for the Model I detectors based on the statistics IT, TT', D~n , "w2

n, 
Ü,  Q[2 ,  Q\5 , and Q\9 . 

The maximum PFD's, the jS's, for the statistics Q'p are all 
ß{Q'p, A) = 1 -  a and are not plotted.   Also, on these graphs, 
which are plotted for a = .01 and .05, and n = 50 and 100, there is 
a single graph labelled "X, " which is a plot of PFD ß vs. A for the 
parametric case in which both the pure-noise cpf F0 and the noise- 
plus-signal cpf F1 are normal cpf's with equal variances and for 
which (a) and (b) above arc satisfied.   All the other graphs are 
completely DF, in the sense that they are valid for any strictly in- 
creasing continuous cpf i^0 and its alternative class  Q{F0, A). 

From these graphs one concludes that 

1. there is a general tendency for detectors with high maximum 
PFD's to have low minimum PFD's, and vice versa; hence, 

2, no one of the Model I detectors based on IT, TT', D~n , nw2
n, 

U, Q'.2 , Öls , §,'9 is max-min better than any other one 
for all of the cases considered. 

This result is somewhat discouraging to one who wishes to 
order the detectors as to goodness.   It is further discouraging to 
note that as of this writing there are not available max-min PFD 
data for the other Model I detectors being studied, Dn,   W n, Q , 
D'n ,  Qs, Z, Z  , etc.   One therefore seeks other criteria. 
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Maximum  and minimum  PFD fur one-sided noise. 
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Maximum and minimum PFD for one-sided noise.    (Continued) 
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Maximum and minimum  PFD for one-sided noise.    (Continued) 
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Moximum and minimum  PFD for one-sided noise.    (Continued) 
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2. PFD for Rayleigh Alternatives 

F0(x) =1 -exp(-x^) 

S* -^i W = 1 " exp (-x2/0) 

»- x 

Some engineers have 
found that Rayleigh-type dis- 
tributions occur frequently in 
practice.   Consequently, it is 
not unreasonable to consider 
the performance of Model I de- 
tectors in the situation for 
which F0 (,r) = 1 - exp (-x2) and 
F1(x) «1 - exp {-x2/e), as 
illustrated.   (A more accurate 
plot of F0 is given on page 30.) 

Since the mathematical expressions for exact PFD are al- 
most completely intractable, one has to resort to Monte Carlo 
methods (10, 000 trials) to obtain accurate estimates of the PFD's 
except for the Q1 detectors in the plots of ß vs. n  for fixed values 6 , 
where only the values for which 0=2 and 4, and TI = 5, 10, 15, and 
20 are computed.    The curve labeled i3'min/3 represents the value of 
ß for the optimal choice of the quantile.   Further, one might in- 
tuitively divide the graphs into two sets—one for those detectors 
which are based on the "one-sided" statistics   D~n, IT, IT' and U and 
the other for those detectors based on the "two-sided" statistics 
-Dr,. nco2

n, £„ .  ¥' and This latter division of the class of 
detectors was made because, prior to making the computations, it 
seemed intuitively clear that the "one-sided" detectors should have, 
in general, better performances against the one-sided alternatives 
1 - exp (-x2/2) and 1 - exp (-,r2/4).   This suspicion is, however, 
not borne out by the plots of the Monte Carlo computations. 
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PFD for Rayleigh noise. 
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PFD for Rayleigh  noise.    (Continued) 
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PFD for Rayleigh noise.    (Continued) 
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PFD for Rayleigh noise.    (Continued) 
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From these plots one can make the following general state- 
ments in which " ! " indicates "generally better than" for the cases 
considered. 

(a) For the "two-sided" detectors 

V2n |  r.Jn \Dn \ Sn | Es+l 

(b) For the "one-sided" detectors 

TT' I u \ D-n | TT I e:5 

(c) There is a significant overlap of the ranges of PFD for the 
two sets of detectors. 

(d) Of the detectors studied for the cases considered, TT' is 
clearly the best and i?s+1 is clearly the worst. 

These results, of course, depend very heavily on the class 
of alternatives considered, and the strongest statement one can 
make on the basis of these results is the following, 

(e) If one wishes to use a Model I detector which (besides its 
DF property) performs well against Rayleigh alternatives, 
one should choose a TT' detector and avoid using an £5+] 
detector. 

In order to make comparable statements concerning other 
classes of pure noise and noise-plus-signal cpf's one would have 
to make comparable computations.   Of course, the amount of such 
computation possible is only limited by time and money considera- 
tions. 

3. Asymptotic Relative Efficiency (ARE) 

The next comparison of Model I detectors will be made on 
the basis of ARE.   One recalls that,  roughly, the ARE,  A^, T2), 
of a r,  detector with respect to a  T^ detector is the limit, 

lim    -—=- , of the ratio of sample sizes for fixed a and ß in the 
n(r1) 
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presence of increasingly weak signals.   Of course, as the signal 
becomes increasingly weak, the noise-plus-signal cpf F^ tends to 
J^O ; and, as one might suspect, the limit,  A(T-\, T2), is sensitive 
to the form of the Fo and the manner in which the i'Vs tend to F0 . 

F(,M= F0 (x-e) 

Another consideration of 
great practical importance is 
the fact that in a large number 
of cases of interest the deriva- 
tion of a computable expression 
for ARE is almost impossible. 
This situation is reflected in 
table 6, which treats only de- 
tectors based on Z,  U, IT, and 
TT', translation alternatives (as 
illustrated here), and certain 
classes of pure-noise cpf's  F0. 
Several numerical entries are 
missing because they have not 
yet been computed. 

Table 6.   ARE's for Model I Detectors 

Pure-noise 
cpf F0(x) 

N jise-plus-signal 
F0 where 9 \ 0 A(Z, U) A(I.jr) .4(2,7.") A(7r, U) A (TT',   V) A(n.ir') 

(Normal) 

*(x-a) 1.05 

u0 
(Uniform) 

F6W =x-B 
0 £ r£ 1+0 

oo «, ao 1.00 

(Exponential) 
F„ (,r) = l-e I+8 

9* x 
„ * .33 

e' 

(Negative exponential) 

e1"6 

.33 

(l+e")"' 
(Logistic) 

(1+e"1*6)"1 .955 1.27 1.27 .75 .75 1.00 

( 

e   /2,.r£ 9 
l-e"r/2,   .r >9 

double exponential) 

er-"/2, x±-e 
l-e";-+0/2. .r>9 

.85 

1 
2 

( 

+ I tan-' x 
n 

Cauchy) 

1 
2 

+ -tan"1  (.r-9) .71 
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From table 6 it may be concluded: 

(a) that there is no clear-cut ordering of the detectors on the 
basis of known ARE's; but 

(b) that if one wishes good asymptotic performance (in the 
presence of increasingly weak signals) for logistic type 
distributions one should use a Ü detector and avoid IT and 
ir' detectors. 

The final goodness criteria to be discussed are adaptations 
of very recent statistical results of Bell and Doksum12. 

4. Uniformly Minimum PFD and Almost Locally Minimum 
PFD Detectors 

In keeping with the ideas developed in the preceding section, 
two other optimal properties, which depend on the particular class 
of alternatives, will be discussed and illustrated here.   UM PFD 
and ALM PFD detectors will be considered here to be as defined 
in the Introduction. 

One recalls that for SDF Model I detectors, ß is a. function 
solely of h0 = Ffj FQ   > where F0 is the pure-noise cpf and Fg is the 
noise-plus-signal cpf.   By restricting attention to classes \Fg 

which satisfy 

'o 
(!)    J^a      ho(u) = ufor an  "' and 

= J"0(u) exists; 
_9_ 
90 

(2)  —  In   he' (u) 
0 = 00 

12 
one can make use of the following theorem of Bell and Doksum: 

Theorem 6.      An SDF detector whose YES-NO decisions 
are based on the statistic 

^ =   Z   ^o [FoiXi)] 
i=l 
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\ 

(i)   is a UM PFD detector for each class of noise-plus-signal 
cpf's with he\u) ^exp   [a(0) J0{u) + ö(0)] where a(0) ¥ 0 
for 0 * 0o  and a(0o) = b(0o) = 0; and 

(ii)  is an ALM PFD detector for each class of noise-plus-signal 
cpf's with   he'{u) = exp  [a(0 ) Join) + ö(0 ) + Q(u, 0 )] where 
a(0 ) and 5(0 ) are as in (1), and lim Q(u, 6 )/(0 - 0o) = 0 for 
all u, where the limit is taken as 0 tends to 0o . 

Employing this theorem and the fact that a detector based 
on a statistic I" is equivalent to that based on the statistic c(0 ^ + 
d (0 ), where c(0 ) *  0, one can construct table 7, which illustrates 
and summarizes known results in this direction.   The complexity 
of the formulas and the vacant spaces in the table indicate the depth 
of the problem here.    (Note that each detector is an SDF detector, 
which also has certain optimal properties for specified classes of 
noise-plus-signal cpf's.) 
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Table 8.   Statistical Distributions for Model I Detectors 

Statistic Distribution 

Source of Tables, Formulas, 
etc. (Numbers refer to 

Bibliography.) 

Dn (1-sample Kolmogorov) 21, p. 423 ff 

0+n .   D-n (1-sample one-sided 
Kolmogorov) 

22 

D'n 23 

n^n (1-sample Cramer-von 
Mises) 

20; 21, p. 443 ff 

K>    ^'n (Equivalent to U) 

< (Anderson-Darling) 24 

Q'P Binomial (sign) 21, p. 362 ff 

Q'Qs Asymptotically chi- 
square 

21, p. 49 ff; 8, p. 421 ff 

A          ^s 

Q, Qs Asymptotically chi- 
square (Matusita) 

25; 21, p. 49 ff 

Sn Asymptotically normal 
(Sherman) 

26; 21, p. 477 ff 

S'n j   (Kimball-Moran) 

^s+l (Empty cell) 21, p. 454 ff 

TT,    TT1 Chi-square 9; 21, p. 49 ff 

"" Sample mean of rectan- 
gular; asymptotically 

\ 2       12 / 

27, p. 257 

11 

z N(0,  1) 21, p. 1 ff 
_9 
z I   Chi-square 12; 21, p. 49 ff 
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PS DATA 

SIGNAL TRANSMISSION *i'- ">*n 
DETECTOR MEDIUM 

KNOWN     ! 
PURE-NOISEi 

DATA NOISE 

—OYES 
—ONO 

COMPARE  Zx.---.Zn AND Jj , 

III. MODEL II DETECTORS 

The Model n detector is, as would be expected, an exten- 
sion of the Model I detector.   In Model n PS data   X- 
available, as well as known pure-noise data Yi, 

Xn are 
The 

decision-making process then consists of comparing Zj, • • •, In 

with ^i, • • •, ^171   and deciding YES iff they are "too far" apart in 
some sense.   Further, one recalls that by imposing the reasonable 
SDF and Scheffe conditions of theorem 2, page 10, one is led to the 
class of rank detectors which base their YES-NO decisions solely 
on the ranks R^j),-", R{In), Ä^),-.-, R{Im) of the Z's and 7Ts 
in the combined sample Z^ Ir, 7, 1> Ym 

As in the case of Model I detectors one considers three 
"natural" subclasses of Model n detectors: 

1.   Sample cpf (SDF Scheffe Model IT) detectors, which employ 
statistics based on differences of the PS-data cpf Fn and 
the pure-noise-data cpf Gm, 

Run-block (SDF Scheffe Model 11) detectors, which base 
their decisions on the number of PS-data values Z1, • • •, Xn 

which fall in certain intervals determined by certain (pre- 
assigned) order statistics of the pure-noise sample 
] I»' K 

Rank-sum (SDF Scheffe Model 11) detectors, whose decisions 
are based on sums of functions of the ranks R{I-j),' •', R {Xn), 
R{h),-", Ä(^). 
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In the succeeding three sections general formulas and 
specific examples of the common types of Model II detectors are 
developed.   The fourth of the succeeding sections introduces a de- 
tector based on a randomized statistic, which is relatively new. 
This new class of detector introduces artificial noise into the de- 
tector in order to circumvent some difficulties arising in the use 
of the more classical DF detectors. 

In the latter sections of this chapter, the various Model II 
detectors are compared in terms of such previously developed 
goodness criteria as PFA a, PFD ß, and max-min ß. 

In describing the Model II detectors it is necessary to recall 
some notation and to introduce other notation. 

1. PS sample: Zj, ■ • • ,Xn        Order statistics: J(l)< - • ■ <I{n) 

2. Pure-noise sample:     7^ • • •, 7- Order statistics: 7(1)<' • • < 7(m) 

3. Combined sample:       {Zj, • • • , ZN\ = [X^ "•, Yn; 7l5 *'', 7m} 
where iV = n + m 

4. Combined sample order statistics:    i(l)<* • • <Z{N) 

5. Degenerate cpf: 6 where e(.r) = 0 or 1 according as 
X< 0 or  x^: 0 

6.    PS sample cpf: Fn where  Fn{x) = Z   e(.r-Jf) 
i=l 

m 

7.    Pure-noise sample cpf:     ?   where   (?.., (y) = -    /_.   e(.y~7) 

'   ,7=1 

N 

:    r where i^?) = #   /.   eiz-Zr) 8.   Combined sample cpf 

9.   Rank of 7  in combined sample:   fi(J,) 

Rank of 7 in combined sample:  R ( 7;) 

r=l 

65 



Some of the more useful relations between these quantities 
are; 

1.   Rili)  =   ^ e{Xi-Zr)= mXi) 

2.   F(s) -   nfn(g) + mgm(g) 

n + m 

iir(jv+i) 
i=l J-l r=l 

4.   The possible ranks are |l, 2, • • •, N\  and, consequently, 
the collection {R(X^), • •-, R{Xn)\ of X-ranks uniquely de- 
termines the collection |ä (71), • • •, i?( Yn)] of f-ranks and 
vice versa. 

A. MODEL li SAMPLE Cpf DETECTORS 

The detectors of this type are essentially extensions of the 
Model I sample cpf detectors. 

1. Kolmogorov-Smirnov Detector 

D (n, m ; r; *) = sup    j \Fn (x) - Gm(x) | J*[F(x)] j (32) 
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The usual variations of this statistic are 

D{n,Tn) = sup    \Fn{x) - Gm{x)\ (33) 
X 

max   \Fn{Z{r)) - Gm{Z {r))\   ^m'1 m3*\NFn {Z{r)-r\ 
r 

= max max     -- Gn(T(i)) , max 
J 

Fn im  - J 
m 

D+(n, m ) = sup [Fn{x) - Gm{x)] = max [Fn {Z{r)) - Gjzir))] (34) 
x 

= max     max Gm{X{i))\ , max  fjn(7(j)) - l 
771 I 

D'{n , 77i) = sup  [Gm (x) - Fn{x)] = max [Gm {Z(r)) - Fn (Z(r))] (35) 
x 

max    max ani.z(i)) - l- n 
, max 

J 
771 

- ^(Kj)) 

2. Cramervon Mises Detector 

Corresponding to the two-sample Kolmogorov-Smirnov de- 
tector is the two-sample Cramer-von Mises detector which bases 
its decisions on statistics of the form below, 

OO 

W{n,mir, *)*   j    \\Fn (x) - GAx)\ \/*[F{x)] {   d Fix) 
— OO 

(36) 
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The common versions of this statistic are 

W !(n, m ) =   /      |X (x) - G., ix)f d Fix) (37) 

iV-1 

= ^   S   [FniZir))   -^(^(r))]5 

r=l 

JlT-l 

{l/Nm2n2)    Z      [NnFn{Z(r))   -  r   nf ; 
r=l 

W+{n, /a) *   j     [Fn (x) - ff,;(x)] d F (x); and (38) 

W (n, 771) /[ G^ix) -Fn(x)]dF{x). (39) 

The two one-sided versions are related by W (n, m) 
n 

2m       2      ^ 

Whitney-Wilcoxon statistic to be treated later. 

i  {n,m) - —— + ö " ZJ ^(JJ), which is equivalent to the Mann- 

For an illustration of the computations involved with 
Kolmogorov-Smirnov and Cramer-von Mises detectors, one can 
consider the following example. 
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Example 8. 

PFAa «= .005 n = 5, 77i «6 

D{n,m.) detector:   Decide  YES  iff 

max   \Fn{Z{r)) - Gm(Z(r))\   >   .833* 
r 

w\n,m ) detector:   Decide YES  iff 

N-l 

I   1 [FniZir)) - ff, (Z(r))]2   >   -766* 
N r*l 

PS data (J^):   3.2, -1.4,  7.0, 4.5, 0.7 

Pure-noise data (77):   -1.6, 5.4, -0.4, -0.3, 2.5, 1.0 

r Z{r Sample Fn (Z(r)) G, (Z(r)) Fn (Z(r)) -G,, (Z(r)) \fn  (Z(r))-G„(Z(r))]2 

1   1 -1.6 7          1 0 .167 -.167 .028 

2 -1.4 x       1 .200 .167 .033 .001 

3   ! -0.4 Y .200 .333 -.133 .018 

4 -0.3 Y .200 .500 -.300 .090 

5 0.7 X .400 .500 -.100 .010 

6 1.0 Y .400 .667 -.267 .071 

7 2.5 Y .400 .833 -.433 .187 

8 3.2 X .600 .833 -.233 .054 

9 4.5 X .800 .833 -.033 .001 

10 5.4 1   r .800 1.000 -.200 .040 

11 7.0 i   x 1.000 1.000 .000 .000 

.500 

D(n, m) detector:   D(n, 771) = .433 < . 833  Decision:   NO 

y2(n, 771) detector:   ^2(n , ffi) » — (. 500) = .045 < . 766 Decision: NO 

' Obtained from ref. 21, p. 443-444.    Since the exact value PFA a= .DOS was not tabulated, 
".766" is an interpolated value, and ".833" yields a= .004. 
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From the table above it is easy to compute the values of 
some of the other statistics of importance, such as 

D+(n,m) = .033;D"(n,m) = .433 and 

2 R{X) = 2+5+8+9 +11 =35. 

3. Sign-Quantile Detector 

The final Model 11 sample cpf detector of importance is the 
sign-quantile detector.   The rationale for its use is the immediate 
extension of that for the Model I sign-quantile detector, which is, 
roughly:   if the unknown continuous pure-noise cpf F0 and the un- 
known continuous PS-data cpf Fi are equal, then one would expect 
the PS sample X-^, • • • , Xn and the known pure-noise sample 
^i, '' •, Ym  to be "well interspersed. "    More specifically, it would 
be expected that approximately np of the J's and mp of the Z's are 
less than or equal to the 100 jDthpercentile Z{Np) of the combined 
sample Z^,- • •, ZN . 

Consequently, for 0 = go < g1 < g2 < • • • < gs < gs+1 = 1 

[jn {ZWqJ) - Fn{Z(Nqul)) -  iqi - q.^) 

and 

\GjZ(Nq.))  - GMNq^))  -   (^ " g^)] 

are both measures of deviation from the "well-interspersed" situa- 
tion.   Customarily, one uses the notation p. = q. - q., ; 

and 

nii  ~ n 

riai - m 'li 

Fn{Z{Nq.)) - Fn (ZiNq^)) 

G:RiZ(Nq.)) -GjZiNq.j) 

70 



Hence 

n li 

n-pi 
and 

m 

are the above-mentioned measures of dispersion. 

For visualization it is perhaps helpful to consider table 9. 

Table 9 

Interval          N^S 

PS Data 
Frequency 

Pure-Noise 
Data Frequency TOTALS 

(-co. Z{JVg1)] "n n21 Np1 = Nq1 

{Z^NqJ,  Z{NqJ\ "12 "22 Np2=N(q2-qx) 

• • • 
• • • 

• • • 
• • • 

{Z(Nqs),  «) nl,s+l n2,s+l Npsn=m-qs) 

TOTALS Hi = n n2 = n \N 

Z{Nq.) is the (lOOg,.)111 percentile of the combined sample 
and, hence, Nqi of the combined sample points are less than or 
equal to Z{Nqi). 

Further, if the unknown cpf's of the PS data and the pure- 
noise data are equal, one expects that n^is approximately 
rijP. = np. and that 712-1 ^s approximately n p. = mp. for all i. 

One then generalizes the contingency-table tests for inde- 
pendence to obtain detector statistics of the form below. 

■ 

For the sign-quantile detector, 

Qirij, n2; q1>-'-,qa;r, *) 

s +1      2 

1   1 
i=l   j=l 

-.n 
* (nß/nj , p ) (40) 
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where  n1 = n ,  n2 =m to simplify the summation, and the p.  are 
such that each Np. is an integer. 

On setting s = l, g =-,   r = 2, *("/>/ , P^ = \/"J7PJ 

and making the usual chi-square correction for a 2 x 2 contingency 
table, one obtains the median detector 

(|2nn-n|    -1) nm (41) 

On setting p. = (s+1)"1,   r = 2 and * = 1, one obtains, on 
simplifying, 

s+1 

«s+l nm        t-1    nli r 
N 

t=l 
(42) 

The Matusita modification yields 

s+1 

s+i 

3+1 / S+1 v 

(43) 

As an illustration of the computations one might consider 
the following example. 

Example 9. 

PFA a  = .005 

Ql detector: 

^4 detector: 

n= 20; /7i= 16 

Decide YES iff 
36 

(|2nn-20|-l) 
(20)(16) 

= .450 (|r11 - 10|   - .5)2> 7.88 (the 99.5thper- 
centile of the chi-square distribution with 1 
degree of freedom) 

(4)(3(;)   v .. '  mmn Decide YES iff 
(20)(16)    - 

1/ •—J. 
16 

1*: = .450   ^   n^-45 > 10. 60 (the 99.5th per 
i =1 

centile of the chi-square distribution with 3 
degrees of freedom) 
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Q\ detector: Decide YES iff 2 I 1 

v/(2Ö)(16J   i=l 
Z v/nli n2i 

= 2 112 Sy^ ij n2i > g(. 995)   [where g(.995) 
i=l 

is the as yet untabulated 99.5th percentile of the 

distribution of Matusita's25 two-sample statistic]. 

PS Data (Ij): -.44,  -.10,  -.41,  1.08, -.77,  -1.65, 1.19,  -.55 

n = 20 -2.05, 1.04,  .05,  1.88,  .31,  -.96, -.18,  .52 

-1.41,  -1.28,  .10, -.39 

Pure Noise (77):   -1.18,  -1.31,  .62,  -.08, -.86,  .41,  1.98 

77i=16 .15,  1.14,  -1.95,  -.45,  1.28,  -1.55,  -67 

1.18,  -.31 
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Sample        i Computations 

r     1 Z{r) Designation for Qv Q4, Q\ 

l      1 -2.05              \ x        T 
2 -1.95              | 7 

3 -1.65 X                i 

4 -1.55             | Y                1 five J's 

5 -1.41 X                | four 7!s 

6       j -1.31 Y 
7 -1.28 X 

8       i -1.18 Y 

9       | -  .96 X 

10 -   .86 Y 

11       | -   .77 X 

12 -  .67 Y 

13 -   .55 X five J's 

14 -   .45 Y four J's 

15 -  .44 X 

16 -  .41 X 
17 -  .39 X 

18 -  .31 Y 

19 -  .18 X 
20 -  .10 X 

21 -  .08 Y 
22 .05 X six X's 

23 .10 X three J's 

24 .15 
\                Y 

25 .31 X 

26 1            •41 1           Y 
27 1            .52 |                X 

28 .62 !         ? 
29 I          i-04 1           x 
30 1.08 X 

31 1          1.14 Y |           four J's 
32 1.18 ? five F's 
33 1.19 \                ^ 
34 1.28 1                Y 
35 1.88 1               I 
36 i          1.98 1               Y 
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From observing the ordered values above one can construct 
the necessary tables for computing Q1, Q4, and Q\ (tables 10 and 
11). 

Table 10 

For computing Qj 

Interval               \*G X Y TOTALS 

(-oo, Z 18)] 
1st half 

10 8 18 

(Z(18). «) 
2nd half 

10 8 18 

TOTALS 20 16 36 

Table 11 

For computing Q. and Q\ 

Interval               N^© X Y TOTALS 

(-«, Z(9)] 
1st quarter 

5 4 9 

(Z(9), Z(18)] 
2nd quarter 

5 4 9 

(Z(18), Z(27)] 
3rd quarter 

6 3 9 

(Z(27), «) 
4th quarter 

4 5 9 

TOTALS 20 16 36 

Using the given formulas one finds: 

Q1 = . 113 < 7. 88 and the (31 detector decides NO; 

g4 = . 90 < 10. 60 and the (34 detector decides NO; and 
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Q\ = .022. (Since the y 4 has not been tabulated no decision 
can be made here.) 

Optimum choices of the number (s + 1) of intervals and other 
topics related to goodness criteria will be treated in Section E. 

B. MODEL II RUN-BLOCK DETECTORS 

This class of detectors is also based on the measures of 
relative "interspersion. "   An X-run in the ordered combined sample 
is a consecutive sequence of X's immediately preceded and imme- 
diately succeeded by J's.   A 7-run is similarly defined.   If the PS 
data and the pure-noise data have identical cpf's, one feels that the 
two samples should be well interspersed and that, therefore, the 
total number of runs, i.e., the number of Z-runs plus the number 
of 7-runs, should be relatively large.    On the other hand, if the 
pure-noise (or Y) cpf and the PS (or X) cpf are as illustrated,  one 
expects that the number of runs will be relatively small. 

jro(PURE NOISE) 

jr  (NOISE PLUS SIGNAL) 

A.    "Location" 
alternatives 

B.   "Spread" 
alternatives 
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Once the combined sample is ordered it is a simple matter 
to calculate the total number of runs.   However, it is of some 
value to give an explicit formula for calculating this total number 
of runs.   To that end, one first notes that 

:-i+i = e  [Fn{Z(i+l)) - Fn{Z{i)) -1/2n]  = 1 iff Z{i+1) is an J; 

lei+i-ei|: 

n-1 

0 if both Z(i+1) and Z{i) are X's or both are T's 
1 if Z{i+1) is an I and Z{i) is a T 

-1 if Z{i+1) is a 7 and Z{i) is an X; 

1 if Z(i+1) and Z{i) are from different samples 
0 if Z{i+1) and Z(i) are from the same sample; 

V [ej+j-e^   number of changes of sample X-to-T and 7-to-X 
""" in the ordered combined sample; 1=1 

and that the total number of runs is therefore 

n-1 

R — 2 e|/n(Z(i+l))  -Fn iZ{i))  -l/2n] 
i=l 

-e[Fn (Z{i)) -Fn(Z{i-l)) -l/2n] (44) 

Closely related to the run-detector is the detector based on 
the number of empty X-blocks.   Originally, a 7-block was defined 
as the interval between two successive 7,s in the combined sample. 
A large number of empty 7-blocks would indicate that the samples 
were not well interspersed. 

The M 7-values 7l5 • • •, Tm  give rise to (m+1) blocks: 
(-oo, 7(1)],   (7(1),  7(2)], ,  (7(/7i-l),  7(77i)],   (7(777),   =0), The 
number of empty 7-blocks is found to be 

771+1 

£ = (777+1) -  2   e [Fn(YU)) - Fn {Y(j-l)) - l/2n] 
J=l (45) 

where  7(0) = - co and Y(m+1) = + oo. 
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More generally, one may wish to consider blocks deter- 
mined by certain percentiles of the Y (or pure noise) sample.   Let 
0 = g0 < (jj < • • • < gs < qs+l = 1 be probabilities such that each 
mq^ is an integer; then a more general empty-block statistic is 

8(n, m, g^---, gs) = (s+l) 

s+l 

"  Z    e |/n (7(7^.)) - Fn {Y{uq  x)) - l/2n] (46) 
J=l 

The detectors based on statistics (45) and (46) are, of 
course, immediate extensions of the Model I empty-cell detector. 
The Model II extensions of the Model I spacing detectors are based 
on statistics of the form 

s+l 

S(n,m;qi,---,qs;r,-*)=   Z   |.^(r[(m+l)g.]) 

-   ^(/[(TTi+i^.j)   -(g. -q.^) 

where 0 = g0< gj < • • • < gs < gs+1= 1. 

Corresponding to the Model I situation there are two special 
cases, 

771+1 

S{n, 770 =  Z    Uninj))  -Fn (7(j-l))  -~- I (48) 
J=l m   ^ 

771+1 

Szin,!*)^}.  \Fn iW)) -Fn(YU-l)) -^- |2 

' ^f (47) 

(49) 

For the final detector discussed in this section, one con- 
siders a statistic specifically designed for the one-sided situation 
just illustrated (A, in preceding figure).   It is the Epstein-Rosenbaum 
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statistic which equals the number of X-values exceeding the last 
7-value, i.e., 

V =n[l-Fn{Y(n))] (50) 

Since the last order statistic 7(m) is relatively "unstable, " 
one quite often makes use of the more general statistic 

L{n, m;q) = n[l-Fn {Y{mq))] (51) 

the number of J-values exceeding the 100gth percentile of the 
7-sample. 

Before giving an example of the use of the statistics de- 
scribed above it seems worthwhile to comment that except for R, 
the statistics described above are asymmetric, in the sense that 
one is working with 7-blocks or 7-runs.   Detectors with similar 
rationales could be constructed if one considered X-blocks and 

J-runs.   Also there is some merit in considering the sum of the 
statistics based on the X-blocks and the 7-blocks.   This latter 
technique is used in constructing R which is the sum of the number 
of X-runs. 
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Example 10.    Consider the data of Example 9 with n = 20; 
m = 16; and PFAa  = .005. 

r ZM 
Cum. No. 

of Runs 

Cum. No. of 

Empty Y-blocks V I(n.m,.75) fninm |%| =\Fr.{nj))-Fn(yu-v)~\ lo"^-2 

1        X      I 1 0 

- Y 2 0 .05 | .05-0-.059| =.009 81 

3 X 3 0                  \ 

4 r 4 o                i .10 | .10-.05-.059]   =.009 81 

5 X 5             j 0 

6 r 6           j 0                 : .15 I.15-.10-.059|   =.009 81 

7 x    1 7            \ o          ! 
8 r    | 8            1 0               1 .20 |.20-.15-.059|  =.009 81 

9   | x 9            | 0 

10 7 10 0 .25 |.25-.20-.059|   =.009 81 

11 j 11 0 

12 r 12 0 .30 I.30-.25-.059l  =.009 81 

13 X 13 0 

14 Y 14 0 .35 |.35-.30-.059|  =.009 81 

15 X 15 0 

16 X 15 0 

17 x 15 0 

18 Y 16 0 .50 |.50-.35-.059|=.091 8281 

19 Y 17 0 

20 X 17 0 

21 Y 18 0 .60 |.60-.50-.059| =.041 1681 

22 X 19 0 

23 19 0 

24 Y ,       20 0 1     .70 1.70-.60-.059| =.041 1681 

25 i      21 j                 0 

26 Y 22 0 .75 |.75-.70-.059|   ^.009 81 

27 X 23 0 

28 24 o .80 |.80-.75-.059| -.009 81 

29 1    X 25 0 1 

30 X 25 0 i            2 ; 
31 26 0 2 |     .90 |.90-.80-.069| ■ .041 1681 

32 Y 26 2 .90 1.90-.90-.059| =.059 3.181 

33 ! z 27 3 

34 28 3 1    .95 |.95-.90-.0591 =.009 81 

35 x 29 4 

36 Y 30 1   (' 4             j 1.00 |1.00-.95-,059|     .009 8] 

»=30 e=i ;.'-( L(n,m, .75)=4 
i 

.372 

5,(r.,(7i)=.372 

17,696 

S(n.m) -- .018 
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The decision, rules are: 

R detector:   Decide   YES  iff R ^ 10. 

g detector:   Decide  YES  iff    zZJi^l > + 2.576 
  <r(9) 

where /i(£) = n2/N =11.11 
a(ß) =nm/N3/2= 1.48 

L' detector:   Decide  YES   iff 20 [l - Fn (7(16))]   2=7. 
(Note:   The value "7" corresponds to PFA a = 
. 01.    There are no tabulated values for a = 
. 005 cs of this writing.) 

L{n,m,  .75) detector:   Decide  YES   iff 20 [l - ^(7(12))] 
  - n[l - p(a)]   +lwhere   [q-q{a)]- 

EM [iZlMl   + ^ - ^ = ^ {a) snd, 

consequently,   n[l - p(oi)]   + 1 = 15. 

17 

S(n,m) detector:   Decide   YES   iff    /.   \Fn iYiJ)) " 

1 I J=1 

Fn{Y(j-l)) - TT   - bv  where ö1 is the untab- 

ulated 99. 5th percentile of the   3{n, n ) 
distribution. 

17 

^(n.TTi) detector:   Decide  YES   iff    2. l-^n (7(j))- 

1    2 

Fn (7( j-1)) - —     — c1, where Cy is the untab- 

ulated 99. 5th percentile of the ^(TI, m) 
distribution. 

Consequently, theß, P, L\ and I,(n, m, . 75) detectors 
decide YES.    Further, since öjand Cj are unknown, the decisions 
of the 3{n, m ) and 52(71, m) cannot be determined. 

Optimum choices of q and other topics related to goodness 
criteria will be treated in Section IIIE. 
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C. MODEL II RANK-SUM DETECTORS 

The detectors of this type are generalizations of the detec- 
n 

tor based on the statistic  V=     ^   R{^i)-   The intuitive justifica- 
i=l 

tion for the use of this statistic is as follows.   If F0 > F1 (see 
illustration, p. 41), then the X distribution is stochastically larger 
than the I distribution, and one expects that in the ranked com- 
bined sample the I values will occupy the upper ranks.   Hence 

V 

n 

= —     y    Ä(lj) will be significantly large. 
i=l 

In order to determine which values of    > R{Ii) are "sig- 
nificantly large" or "significantly small," one needs tables other 
than those previously used.   Therefore, one might ask which con- 
stants can be used in place of the ranks, to permit use of the 
"standard tables" and satisfy certain goodness criteria.   One, then, 
is going to consider statistics of the form 

i=l 
(52) 

where h is an appropriately chosen function.   Table 12 presents 
some usual choices of h. 

n 

Table 12.   Statistics I 1 h[R(Ii)] 
i=l 

Corres. 
1-Sample 
Statistic 

Two-Sample 
Statistic hjCr) (Expectations) h.J,r) (Perce ntiles) 

Z Fisher-Yates- 
Van der Waerden 

£[«(r)| *] *-'(^) 

u Mann-Whitney- 
Wilcoxon 

epMl^o]   */+1 'J" (N +l)  # + 1 

Savage 

N 

EB(r)|ffe]=        2      l/J 
j=A'-r+l 

tfij^-l* 
N + l 
A'+l-r 

82 



Where *, U0 and Hc are, respectively, the cpf's of the 
standard normal, standard uniform, and standard exponential dis- 
tributions (see Section 11C); £(r) is the rth order statistic of a 
random sample   ^ ,   ^ " '» ^n     from a population with cpf H; 
and E [^(r) ] fl"]   is its expectation. 

Historically, the Fisher-Yates detector was studied first. 
In an attempt to attain approximate or asymptotic normality one 
replaces each R{Xi) by E W [ÄCXj)]  |   *!   to obtain the statistic 

n 

^(*)=^    Z   ElwiRdi)] |  §j. (53) 

This statistic turns out to be asymptotically normal, but 
for small or moderate values of n and m, special tables of signifi- 
cance levels are needed.   Further, one needs the not-too-common 
tables of expected values E[W{r) | *] of normal order statistics. 
To circumvent this latter difficulty (which does not exist for U0 

and ffe since explicit formulas are available in these cases), one 

introduces the statistic based on percentiles #" iljir) i. e. 

m4 1 Wix^ - =. 
i=l 

{N+l 

Since there is no apparent reason for restricting considera- 
tion to statistics related to 3», one naturally extends consideration 
to statistics based on f/0 and ffeand, finally, to those based on 
arbitrary strictly increasing cpf's.   The general rank-sum detec- 
tors are, hence, based on statistics of the form 

n 
7'(#)=^   X E \wiRiXi)] |^| and (55) 

i=l 

V(H) =-    'S  H'1 ^(Ji)      . (56) 
F + 1 

1=1        L 
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Before illustrating the necessary calculations, one should 
note the following: 

1. In practice, one usually employs principally those detectors 
for which H= $, U0 or He.   These restrictions, as in the 
one-sample case, coincide with certain seemingly unrelated 
information theory results. 

2. The statistics V{H) and Vr(H) are primarily designed for the 
one-sided situations as illustrated on page 41.   Several de- 
tectors for other types of situations will be discussed after 
the numerical example. 

3. In the one-sample case, the corresponding rank-sum de- 
tectors are based on statistics of the form 

Since F0 (X^) is the percentile rank of Ij, one might be led 
to consider statistics of the form 

n 

i    J    H-'iRiXi)]. 
i-1 

This statistic is not well defined, since /y"1is only defined 
for numbers between 0 and 1.   The next step in the evolu- 
tion is the detector based on 

n 

i 2.- n 
RUt) 

N 

which would be well defined except for the fact that 
ff 1(1) =00, if tf is a strictly increasing continuous cpf.   The 
final result is, then, the given statistic V(H). 

4.   For the case E = UQ, yo"1(u) = u whenever 0 < u < 1 and, 
hence, 

v    1    V   RilA 1 V 
TO=- L^^TW™ A  R{Xi) (57) 

i=i      ^+1) ^=1 
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which is equivalent to the more usual 
n n 

i=l i=l 
the Mann-Whitney-Wilcoxon statistic.   Further,  V{U0) 
V'{Uo). 

Finally, to facilitate the computations in the example below, 
one needs to know the following theorem (see ref. 8, p. 500): 

Theorem 7.      li F0= F-^, i. e., if the PS data are pure noise, 
then 

n 

^4 2 (i)   the statistic   7h = -    /_,   ft [ä(JJ)] has 
1=1 

^ 

mean£(^)=-    ^ ft(r) 
r=l 

and variance 

771 
var (7i-,) =  5< 

N 

A) i "^»-^ 
r=l 

N 

2 M") 
r=i 

and 

(ii)   the statistics 

7(g) - E [7(g)] 

^var   [/(ff)] 
and 7,(g) "£ [7'(g)] 

yvar   [7(g)] 

have asymptotically a normal distribution for g - <l>, U0, 
and gp. 
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Example 11.     Consider the situation for which n = 10, 
m ~8, N = 18, PFA a = .01 and the data are as given. 

PS data (Ji):   18.1, 14.3, 15.2,  14.5,  17.9,  17.5, 15.3, 16.5, 
17.1, 16.6 

Pure-noise data (Ty):   14.2, 15.4, 16.4, 17.7, 18.2, 17.3, 15.1, 
16.1 

Using normal approximations, one derives the decision 
rules below for the detectors described above and for the one-sided 
alternatives illustrated on page 41. 

V{ U0) detector: 

Decide  YES   iff   V{Uo) ~9'5   < -2.326. 
1.407 

7(<*>) detector: 

Decide  YES   iff     v   ' <   -2.326. 

7(fie) detector: 

^cide   YES   iff   ^e)-0.873   <   _232^ 
.254 

F^ffg) detector: 

Decide  YES   iff   ^'^L" 1   <   -2.326. 

7'(4>) detector: 

Decide   YES   iff       V ^     <   -2.326. 

The ranked data and computations are best given in tabular 
form. 
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r Z(r) 

3 
g 

(Mann-Whitney 
-Wilcoxon) 
(N+X) V{U0) 

Mr) = r 

(Van de 
Waerden) 

w^t.i) 

(Fisher- 
Yates) 

hz(r)=E{_i(r)\*\ 
hi(r) = 

In^V- 1) - ln(JV+l-r) 

r (ffa) 
Mr) = 

N 

j=N-r+l 

1 14.2 Y 1 -1.62 -1.82 .054 .056 

2 14.3 7. 2 -1.25 -1.35 .111 .115 

3 14.5 X 3 -1,00 -1.07 .171 .177 

4 15.1 Y 4 -0.80 -0.85 .236 .244 

5 15.2 X 5 -0.63 -0.67 .305 .315 

6 15.3 X 6 -0.48 -0.50 .379 .392 

7 15.4 Y 7 -0.34 -0.35 .459 .476 

8 16.1 Y 8 -0.20 -0.21 .546 .566 

9 16.4 Y 9 -0.07 -0.07 .641 .666 

10 16.5 X 10 0.07 0.07 .747 .777 

11 16.6 X 11 0.20 0.21                          .864 .902 

12 17.1 X 12 0.34 0.35                          .998 1.040 

13 17.3 Y 13 0.48 0.50 1.152 1.212 

14 17.5 X 14 0.63 0.61 1.335 1.412 

15 17.7 Y 15 0.80 0.85 1.558 1.662 

16 17.9 x 16 1.00 1.07 1.845 1.995 

17 18.1 X 17 1.25 1.35 2.251 2.495 

18 18.2 Y 18 1.62 1.82 2.944 3.495 

2ft(r) 171 0 0 16.60 18.00 

Zh2{r) 2109 13.23 15.75 26.23 32.50 

£{¥:) 9.5 0 0 .922 1.00 

var(7^) 1.979 .0540 .0643 .0286 .0592 

v/var (n) 1.407 .232 .254 .169 .243 

F^ 9.6 .013 .013 .901 .962 

n   - £•( Fi,) 
.071 .056 .051 -.124 -.156 

v/var (7h) 

Therefore, each of the detectors decides NO. 



One should note here the following useful lemma. 

Lemma.      If U is a random variable with cpf U0, then for each 
strictly increasing continuous cpf H 

//~1(f/) is a random variable with cpf H; and 

ElglH^iU)] \U0} =  E[g(w) \H] whenever such expectations 
exist. 

Consequently, one can rewrite the statistics 

n 

,(-H)=^    2    E^iRiWJlH} 
i=l 

as 

r'(ff)=i    2     EiH-^UlRU^lUo}- (58) 

i=l 

Recent results   '   indicate that the statistics V'iH) are special 
cases of the more general class of "locally most powerful" rank 
statistics.   They are of the form 

V{h'6)=l    S    ^{jo'lulRiXi)]}) (59) 

where 

U{i) is the ith order statistic of a sample of size N from U0; 

J0'iu) =^ In hg'{u) 

{he}  is a family of cpf's on the unit interval (0,1) such that 

88 



dhf 

h0 (';) = u, and ho* = 
du 

is non-zero for all u and 0 

[Model 11 detectors based on these statistics correspond to the 
Model I detectors discussed immediately preceding Example 7 
(p. 45)]. 

Special examples of these statistics are 

and 

57   I   E\(*-
1
{UIR{XM)

2
\UO 

i=l 

i=l 

- 1 

- 1 * 
(^"M^Eä^)]})2 

1 + 

i=l 

üo 

1+ (//-^/[^(lO]})2 
Wo 

EQ   is the cpf with derivative [77(1 +r2)] 2\T-1 

(60) 

(61) 

(62) 

The figure on page 76 illustrates (A) detectors based on 
equation 62, primarily designed for "location" alternatives, and 
(B) detectors based on equations 60 and 61, used principally for 
"spread" alternatives.   In each of these cases there are difficulties 
in computing and tabulating the expectations E [J/(r) | #] , as well 
as in attaining predetermined PFA a's.   To prevent these diffi- 
culties, one should consider the detectors which make use of arti- 
ficial noise generators, as discussed and diagrammed in the 
following section. 
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D. MODEL II ARTIFICIAL NOISE DETECTORS 

In attempting to obtain the desired preassigned PFA and to 
tabulate the distributions involved, one should consider an adapta- 
tion of a statistical result reported by Doksum.11 

PS DATA 
Jj, • • • ,xn 

A. Overview. 

DETECTOR —OYES 
—ONO 

KNOWN 
PURE-NOISE 

DATA 

ARTIFICIAL 
NOISE DATA 

WITH 
DESIRED 

CPF B 
* 11 ■" ■ • II'JV 

PS DATA 
X^-'-.Xn RANKER 

B(x1),---.B(in), Ä(r1).>--.Ä(rn) 

KNOWN 
PURE-NOISE 

DATA 
7, . • • •, 7, 

B.   Detailed sketch. 
CONVERTED DATA 

DATA 
CONVERTER 

DECISION I—OYES 
MAKER   |—ONO 

WQ.). HN) 

RANKER 
AND DATA 

BUFFER 

ARTIFICIAL 
NOISE DATA 

WITH 
DESIRED 

CPF B 
It', , •••, k'r 

Detector employing artificial noise. 
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The mathematical basis of the method to be described is 
theorem 8, which is proved in reference 11. 

Theorem 8.    If Z1, • • • , ZN and Wx," ', WN   are independent 
random samples with common continuous cpf's G and H,  respec- 
tively, then W[R (Zj)] , • • •, W\R {ZN )] (i) has the statistical distri- 
bution of a random sample with common cpf H,  and 
(ii) RlWlRiZi)]}  =Ä(Zi)for i-1, 2,---, N. 

The result of theorem 8 is that on replacing each 2"-value 
with the {/-value of the same rank, one is able to replace a random 
sample with cpf <? by a random sample with cpf H, while preserv- 
ing the ranks on which the Model II detectors will base their YES- 
NO decisions. 

Since the Model II detectors under consideration are rank 
detectors, and since the described transformation preserves the 
ranks, there is no loss of information, but a gain of tractability, 
convenience, and economy in using the transformation with a 
judicious choice of the W cpf H. 

As just illustrated, 

1. the combined sample X^ ■ ■ •, Xn ; 7-,, • • • , Tm   is ranked; 

2. a random sample W1, ü^»' " > ^V   0^ artificial noise with 
common cpf H is generated; 

3. each combined sample value Zi or 77 is replaced by the 
1/-value ^[^(Xi)]  or W[R{Tj)]  which has the same rank; 

4. an appropriate statistic is evaluated with the W inputs 
^(Jj),---,  ¥{XP); {/(Jj), •••,  WiYn); and 

5. on the basis of this computed value, the detector decides 
YES or NO. 

(To make use of such a detection procedure, one needs, in 
addition to the equipment used by previously described detector 
models, a random noise generator capable of generating a W 
sample having the desired cpf H.) 
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The major question at this point is:   Which statistics are 
appropriate for the transformed data? 

To answer this question one first considers statistics of the 
form 

n 

n   i=l 

Since for fixed n, m , and hence for N, the -AT expected values 
£■[^(1)  | ff],'",  E{W{F) \ H}   are fixed, the set of values 
E{W[R (Ji)]  I H],---, E{W{R (Zn)] I H]   uniquely determines and 
is determined by the E{w\R (JJ)] \ E] ,■ • ■ , E\W[R {Ym)] | ^} ■ 
Therefore, the statistic ^'(ff) is equivalent to the statistic 

n m 

V"{E)=-   Z   E{W\_R(li)'\\ H\  --   L, E\w{R{Yj)']\H] 
n   i=l m  j=l 

For non-artificial noise detectors it is more convenient to 
work with Vy{H) than with V"(E), since the former statistic requires 
less calculation and is equivalent to the latter. 

For artificial noise detectors, it is proposed that the ex- 
pectation signs "E" be dropped and that one consider statistics of 
the form 

n 

m)=4 X f'/LßUi)] (63) 
n i=i 

and 

r{ff) 

n m 

-    2   HRtti)]  "-   S   VlRiT,-)]      (64) 
i,-l j-l 

where k'i, • • •, .: •■   is a random sample of artificial noise generated 
with common cpf H.   Since the values  .'.(1), • • •,     (TV) are not fixed 
as are the E [);(1) | #],■•-,   E\¥{M) \ H], the statistics T{E) and 
T(E) are not equivalent as are VX{H) and 7"(ff).   It is clear that 
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T{H) does not make use of all the randomly transformed data; and it 
has been proved11 that under some usual (translation) alternatives 
and for large sample sizes, detectors based on T(H) have approxi- 

n 
mately the fraction — of the PFD ß of detectors based on T(H).   For 

f 
that reason attention will be restricted to detectors based on the 
statistics T{H). 

Before illustrating the technique outlined above it is neces- 
sary to state the following theorem, which will be employed in the 
example. 

Theorem 9.   If the pure-noise and PS-data cpf's are equal, 
and ^i, • • •, ^v   is a random sample generated by the artificial 
noise generator with cpf S, then T(H) has the distribution of the 
difference of means of independent random samples of size n and 
m, respectively from populations with cpf's equal to H.   In 
particular. 

(i)   if H= <$>,y/nm/N  T{<t>) has cpf 4>; 

(ii)   it H= U0, and n = m = N/2, then . 5 [l + T(U0)] has the cpf 
of the mean of a random sample of size N from U0, i. e., 
its density is 

^-D, £ (-!,'(*)   (x-l! 
\ff-l 

where the summation is over r s Nzr, 

(iii)   if H= He, and n = m = iV/2,  then N T(He) has the cpf of the 
difference of two independent chi-square variables, each 
with N degrees of freedom; and 

(iv)   \fzN T{Uo) and \/n/2 T(He) are asymptotically N{Q, 1) when 
n=m = N/2. 

It should be remarked that with reference to (iv) of Theorem 
9, the normal approximation is "adequate" for n = m = N/2 - 10. 
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Example 12-    Consider the situation for which n = m = 10, 
N = 20, PFA a = . 05 and the data are as given. 

PS data (X^):   18.1, 14.3,  15.2,  14.5,  17.9,  15.3,  16.5, 17.1, 
16.6,  18.4 

Pura-noise data (Tj):   18.3, 17.5,  14.2,  15.4,  16.4,  17.7,  18.2, 
17.3, 15.1,  16.1 

Using results (i) and (iv) of theorem 9, one derives the fol- 
lowing decision rules for the case (i^o > ^i) illustrated on page 41. 

T(*) detector:   Decide  YES  iff s/rnn/N T($) = 2.236 T(<b) < -1,645 

T(U0) detector:   Decide  YES   iff  /w T{U0) - 7.746 T{ü0) < -1.645 

r(ffe) detector:   Decide YES  iff Vn /2 T{Ee) = 2. 236 T{He) < -1.645 

The detectors above need artificial noise samples generated 
from *, ü0 and He distributions, respectively.   One such collec- 
tion of samples is as follows. 

$ artificial noise sample:   2.455,  -0.531,  -0.634,  1.279, 0.046, 
-0.525,  0.007, -0.162,  -1.618, 0.378,  -0.057,  1.356, 
-0.918,  0.012, -0.911,  1.237,  -1.384,  -0.959,  0.731, 
0.717 

f/o artificial noise sample:   .950,  .455, .317, .869, .358,  .853, 
.540,  .985,  .266,  .373,  .920,   .164,  .998,   .073,  .495, 
.496,  .641, .417,  ,906,  .903 

He artificial noise sample:   .623,  .272,  .511,  .294, .257,  ,639, 
.818,  .165, ,110,  ,691,  ,606,  .317,  ,219,  .428,  .223, 
.275,  .051,  .544,  .492,   .466 
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Table 13 

r        I Z{r)       \ Sample        ! 

Artificial 
Noise [Wi] 
for 7(4.) 

Artificial 
Noise [Wi] 
for T(UQ)        | 

Artificial 
Noise { Wi \ 
for r(He) 

1        i ?        i 14.2             i -1.618 .073 .051 

2          j I         i 14.3 -1.384 .164 .110 

3          j J        ; 14.5 -0.959 .266 .165 

4 7          ' 15.1 -0.918 .317 .219 

5 I 15.2 -0.911 .358 .223 

6 I 15.3 -0.634 .373 .257 

7 I 15.4 -0.531 .417 .272 

8 7 16.1 -0.525 .455 .275 

9 7 16.4 -0.162 .495 .294 

10 I 16.5 -0.057 .496 .317 

11 X 16.6 0.007 .540 .428 

12 I 17.1 0.012 .641 .466 

13 7 17.3 0.046 .853 .492 

14 7 17.5 0.378 .869 .511 

15 7 17.7 0.717 .903 .544 

16 X 17.9 0.731 .906 .606 

17 X 18.1 1.237 .920 .623 

18 \        7 18.2 1.279 .950 .639 

19 \        Y 18.3 1.356 .985 .691 

20 X 18.4 1             2.455 .998 .818 

1 "■ 
i=l 

j                .519 !         11.979 8.001 

n 
j                .497 5.662 4.013 

m 

1 
j                .022 j          6.317 j            3.988 

T{H) j                .0475 j          -.0655 1              .0025 

On the basis of these computations, all three of these detectors decide NO. 
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For generating artificial noise with a given strictly in- 
creasing continuous cpf H, it is often most convenient to make use 
of the lemma on page 88.   One first generates uniform random 
numbers, U1 ,-' •, UN , i.e., random numbers with cpf Do; and then 
transforms them using Ä"1to obtain the sample H'1^), • • •, H'1 (ÜN) 
which is statistically equivalent to artificial noise fror; f.n 
"ii-generator. " 

Uo GENERATOR 
(OR RANDOM 

DIGIT GENERATOR) 

^i.  Ü2,---,UJ N 

[Vi =E~1(Ui) for i =1, •••, iir] 

H'1 

CONVERTER 
¥,,-•',¥, 

Artificial H—noise generator. 

From these considerations one sees that the statistics 

n m 

UlRiY.-)] 

can be rewritten as 

n m 

n     1 m     1 

(65) 

Corresponding to the results mentioned in the latter parts 
12 of sections TIB and HI C,  it is found    that detectors based on the 

statistics T{H) are special cases of detectors based on statistics 
of the following forms: 

771 

'(ft.e)-^ Z J0{U[R(XJ]\ -~ Z Jo {uiRiTj)]} ; 
7-1 7-1 

(66) 
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c 

and 

n T\h,60)=~   2    ^   ^kCfiU?]} l0 = 9f 

m 

^ S   Ä J-e|^(r7-)]}l( 771     ^      80 
(67) 

where 

J"c(u) =ln   hg\u); 

U(l) < • ■ ■  < U(N) are the order statistics of a random 
sample from ü0; and 

| h0 [ is a family of cpf's on the unit interval such that 
dhg 

ho1 -   exists and is positive on the unit interval,  and 
du 

hn   (u) = u. o 

The most common versions of these statistics are with 

do Jgiu) 
_F"{F-1(u)) 

o = o0      F'{F-Hu)) 

and with 

^  J^u) 

J/" (F^ju))] F^ju) 

o = o0 F'iF^iu)) 

where F is an arbitrary strictly increasing cpf with two derivatives. 
The first of these two types is primarily for "location" alternatives, 
and the detectors based on statistics of the second type are for 
"spread" alternatives. 
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E. GOODNESS CRITERIA FOR MODEL II DETECTORS 

As was the case for Model I detectors, all goodness criteria 
will be based on PFD ß (for fixed PFA a), and since these Model n 
detectors are SDF, the PFD will be a function solely of F0 F{1 . 
Further, because of the multitude of possible alternatives it is physi- 
cally impossible to make a "reasonably" complete tabulation of 
PFD.   Consequently, one is led to a comparison of detectors based 
on (1) max-min power for one-sided bands; (2) PFD for Rayleigh 
alternatives; (3) ARE; and (4) LM PFD (locally minimum PFD) and 
ALM PFD (asymptotically LM PFD). 

1. Minimum PFD for One-sided Bands 

The results here are adaptations of the statistical work of 
Bell, Moser, and Thompson,10  which is a partial extension of the 
statistical work of Chapman.9    One first considers, for each 
strictly increasing continuous pure-noise cpf i^j ^he family 
0 (FQ , A) of noise-plus-signal cpf's F1  satisfying (1) Fx < F0 and 
(2) max [.FoC^) ~ -^i (^)] = A.    (An illustration is given on p. 47.) 

In order to apply the max-min PFD criteria one must compute both 
the maximum and the minimum PFD for F0 vs. noise-plus-signal 
cpf's in the one-sided-band family  0(^0, A).   Unfortunately, 
Bell, Moser, and Thompson10  were unable to derive a reasonable 
computation procedure for maximum PFD.   The only results avail- 
able are those for minimum PFD, as given in the graphs on pages 99- 
111. Here the PFA = . 01 or . 05; ß is plotted vs. A; and the sample 
sizes range from n=4, m =5 to n = 10, m = 10.   These graphs 
are based exactly on the complete set of computations of Bell, 
Moser, and Thompson, with the same cases omitted.   Those 
labeled A through L represent the results of the use of accurate 
approximation formulas, while the curves in the M graph are the 
result of Monte Carlo calculations for T($) with 1000 trials per 
point.   It is felt that since other Monte Carlo computations in this 
study are based on 10,000 trials per point, the results for T($) 
are somewhat less accurate than the other Monte Carlo computations. 
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Minimum PFD for one-sided noise. 
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Minimum   PFD for one-sided noise.    (Continued) 
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Minimurn   PFD for one-sided notse.    (Continued) 

101 

* 



I:    F'C*) 

3:     ^^r 

7.(Üo) 

■a- 0.8 

W-0.6 
CO 

A  0.2 

0        0.1      0.2      0.3       0.4       0.5      0.6 

Minimum  PFD for one-sided noise.    (Continued) 
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Minimum  PFD for one-sided noise.    (Continued) 
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Minimum  PFD for one-sided noise.    (Continued) 
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Minimum  PFD for one-sided noise.    (Continued) 
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Minimum PFD for one-sided noise.    (Continued) 
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Minimum  PFD for one-sided noise.    (Continued) 
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Minimum   PFD for one-sided noise.    (Continued) 
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Minimum  PFD for one-sided noise.    (Continued) 

109 



♦ 

Minimum  PFD for one-sided noise.    (Continued) 
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Minimum  PFD for one-sided noise.    (Continued) 
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On the basis of the Bell-Moser-Thompson calculations for 
the Fisher-Yates,  Epstein-Rosenbaum, Savage, Van de Waerden, 
Mann-Whitney-Wilcoxon and Cramer-von Mises Model n detectors, 
one concludes: 

a. On the basis of minimum PFD, 

F'Wf   n*)}    7{Uo)=V,{U0)}   V\He)}\ L' ~W2{n,m) 

where 

f = very slightly better than 

f =  slightly better than 

\ = better than 

}} =  much better than 

~ =  approximately equal 

b. The max-min criterion cannot be applied here until com- 
parable maximum PFD calculations are made. 

2. PFD for Rayleigh Alternatives 

One next considers comparison of the Model n detectors on 
the basis of Rayleigh alternatives, which are considered quite im- 
portant in signal detection (see illustration, p. 53).   Because of 
time limitations, computations were made only for D(n, m ), 
D~(n, m), f/2(n, m), and 7{U0); for 0=2 and 4; and for sample size 
combinations (5, 5), (5, 10), (10, 5), and (10, 10).   For computa- 
tional convenience the curves are plotted in the form & vs. ß for 
the cases mentioned in the following figures (p.  113-116).   On the 
basis of these computations one concludes: 

a. For Rayleigh alternatives 

V{U0)   ]D~{n,m)}}  W2(n, m )  } D(n,m) 

b. If one wishes to use a Model II detector which (besides its 
DF property) performs well against Rayleigh alternatives, 
one should choose a V(U0) detector, and avoid using a 
D{n,m.) detector. 
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PFD vs.   PFA for  Rayleiqh n yleigh noise. 
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PFD vs.  PFA for Rayleigh noise.    (Continued) 
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PFD vs.   PFA for Rayleigh noise.    (Continued) 
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PFD vs.  PFA for Rayleigh noise.    (Continued) 
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3. Asymptotic Relative Efficiency (ARE) 

The ARE results for Model II detectors are exactly the 
same as those for the corresponding Model I detectors.   In fact 
one has the following theorem from Bell and Doksum.11 

Theorem 10.    Let fl be a strictly increasing continuous cpf 
with second moment; and let   [GJJ | be a family of noise-plus- 
signal cpf's satisfying (a) GN < F0 and (b) lim / GN dF0   =1 as iV 
tends to infinity.   Then one has 

A[7'(fl).   7(H)]  =A [7'(ff),   T(H)] =A [V{H),   T(i7)]  =1 

for Model II detectors; and in comparing Model I and Model 11 
detectors, 

A[K{H), K{Ml)]=A [rOD, V'iHj] = A[¥{H), ViHJ] = A[T{H), T(Hl)]=l 

for all (sufficiently regular) H and Ej.    Consequently, one has for 
translation alternatives table 14, which is an exact replica of 
table 6.    From this table one concludes: 

a. that on the basis of known ARE's there is no clear-cut 
ordering of the Model 11 detectors; but 

b. that if one wishes good asymptotic performance (in the 
presence of increasingly weak signals) for logistic type 
distributions one should use a   V{U0) or T{U0) detector and 
avoid the use of the following detectors: 

me).   V{He),   V'iHe),   F'Ue),   T(He),  T{He). 
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Table 14.    ARE's for Model II Detectors 

TRANSLATION' 
ALTERNATIVES 

?^ ^ 

^: 
^   ^T 

•^ n 

>S<   fcs. 
i—i 

^ ii 

tS      -> 

E~( 

II 

-  3 

-^ 

o 

^ 

t^ 

^ 
■^ 

: ^ 

■ 3 

Normal 

Jo (x) = * ix) 
1.05 

Uniform 
F0(x) = Uoix) 1.00 

Exponential 

Fo (x) = He(x) 

Negative exponential 
F0{x)=Be(x) 

= ex, x^0 

.333 

,333 

Logistic 

F0{x) = 
1 + e 

.955 1,27 1.27 .75 .75 1.00 

Double exponential 

er/2,   .r^0 

l-ex/2,x>0 
F0 {x): 85 

Cauchy 

F0{x) = ~ +-ten-1 x .71 
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4. Almost Locally Minimum (ALM) PFD Model II Detectors 

Using the randomized statistics of Section HID and the 
following theorem of Bell and Doksum12, one can construct ALM 
PFD detectors for certain specified noise classes. 

Theorem 17.      If conditions (i), (ii), (iii) and one of (iva), 
(ivb) and (ivc) below hold for strictly increasing continuous pure- 
noise cpf F0 and the noise-plus-signal class  \Ge = h0 ' (^)}, then 
a Model II detector which bases its YES-NO decisions on the 
statistic 

n m 

i=l J=l 

or on the statistic 

n w, 

r'(^e0)=-  S Jo {uttttS} "- 2 J0'\ü[R{YJ)]} 
n    i=1 ra  j=1 

(where J0(u) =\nh0
,(u); Jo'iu) := ^ ln V(u) le = e 

and {/(I), • • • , U(N) are the order statistics of a [/0-random noise 
generator) is ALM PFD. 

Regularity Conditions: 

(1)   h0 has a derivative h0', which, for almost all u, is con- 
tinuous in some nondegenerate closed interval J(0O) contain- 
ing 0O , and satisfies   he '(u) = 1; 

'o 

(ii)  there exist functions M0{u) and Mi(u) integrable over (0, 1) 
and such that for all u and all 6 inl(0o)> 

0< he'{u)^M0(u)zn<i   \he(u)\   ^Mx{u); 
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n 
(iii)   0 < lim — - r < ^ as N tends to infinity; 

(iva)   JQ' is the inverse of a cpf H with finite second moment; 

1 
[J^'(u)]    du < oo and J^ is bounded 

0 
below; and 

(ivc)   there exists a continuous cpf/f such that J0
t[H{x)] is 

convex, bounded from below,       / xdH(x) 

Jj0'[H{x)]   dH{x) 

< °0, and 

< 00. 

Table 15 gives the Je and JQ' for detectors which are ALM 
PFD with respect to some special classes of noise-plus-signal 
cpf's.    Since the detectors in question are SDF,  the functions J0 

and  JQ' depend only on   hg- Fe FQ'   . 
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Table; 16.   Statistical Distributions for Model II Detectors 

Statistic       j Distribution              j 

Source of Tables, For- 
mulas, etc. (numbers 
refer to Bibliography) 

D{n,m)               | (2-sample Kolmogorov- 
Smirnov)                             j 

21, p, 434 ff 

D~(n,m),D+{n,mi (2-sample, 1-sided           i 
Kolmogorov-Smirnov)     | 

21, p. 431 ff 

¥2{n, 77i)              | (2-sample Cramer-von 
Mises) 

21, p. 443 ff; 23 

W+(n,m), 

W'{n> m) 

[Equivalent to F(fJ0)] 

Qi Asymptotically chi- 
square (median) 

21, p. 49 ff; 28, p. 
226 ff 

0 ' Asymptotically chi- 
square (extended median) 

21,  p. 49 ff; 28, p. 
296 ff 

es+i Asymptotically chi- 
square (Matusita) 

21,  p. 49 ff; 25 

e (Empty block) 29, p. 446 

S{n,n) (2-sample Sherman) 

8% (n) 77i) (2-sample Kimball- 
Moran) 

i' (Epstein-Rosenbaum) 21, 499 ff 

i (Moses "extreme 
reaction") 

30 

V{U0),   ¥" (ü0) (Mann-Whitney-Wilcoxon] 1    22, p. 325 ff 

V " (*) Asymptotically normal 
(Fisher-Yates) 

|    8, p. 498; 31,  p. 66 

F(*) Asymptotically normal 
(Van de Waerden) 

1    32 

r($) Normal (Doksum) 1    11,  12 
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Xlcl ' X-kZ'''   ' Xkn 

IV. MODEL III DETECTORS 

As mentioned in Section I, the Model HI detectors are ex- 
tensions of the Model IT detectors.   The region being searched or 
examined is divided into k subsectors and the PS data from the k 
subsectors are compared.   The detector, then, on the basis of the 
appropriate ?c-sample statistic, decides NO iff there is no signifi- 
cant difference between the k PS data samples: 

Sector 1:       Jn , X12,' I- l.n. 

Sector 2: 21 Ä. or I 2,n. 

Sector k ^kl > Xh2> ■k,nk 
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The three "natural" subclasses of Model HI detectors are: 

(1) Sample cpf (SDF Scheffe Model III) detectors; 

(2) Run-block (SDF Scheffe Model HI) detectors; and 

(3) Rank-sum (SDF Scheffe Model III) detectors. 

These three subclasses are introduced and illustrated in 
the next section, where the following notation will be employed 

n the number of data points in the £th PS data sample; 

k - number of sectors; and W =   /     n7- . 

PS sample from sector i:   Iil, J^, • • • , Xi>n . 

Order statistics:   X^l) < Ji:(2) <• • • < J^) 

Combined sample:      Z-^, • • •, Zv      =  \xu , • • • ,  X1(7j 

Order statistics:   Z (1) < • • •  < Z{N) 

Degenerate cpf e, where e{x) = 0 or 1 according as 
.T < 0 or x so. 

Sample cpf of 7;th sample:   is , where 

5 ) 

n 
J 

Combined sample cpf:  F , where 
N 

N   ^ r=l 
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Rank of J-y in combined sample:   R{Iij) 

m 
. - y Ri+ =   /_.  R{Xi )' the sum of the ranks of the members of 

the ith sample 

Artificial noise:   W1,- • •, W,j 

Order statistics:   Td{l) < • • • < W{N) 

Wi+ -    2-,   ^ \ßK%iiS\ > t^16 sum 0f ^e artificial noise 
J=l 

values having the same ranks as the members of the ith 

sample 

++  =   2,     A    F [Ä(Jjj)], the sum of all of the artificial 
i=l   j=l 

noise values 

R:   the cpf of the artificial noise sample 

TV 

.7=1 

i=l   j=l 

^l-^) .7=1 

fc      n,- 
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For some of the detectors to be described it will be neces- 
sary to consider blocks of the order statistics Z(l) < • • • < Z{N). 
The blocks are chosen tobe of equal size (if possible), and, conse- 
quently (wherever possible), 

b , the number of blocks, is a positive integer which 
divides N and 

The b blocks of order statistics are, then, 

:(!),• •■, z 
N 

* !♦ 
, z 2N^ 

/     N     \ 
Z\N- - +lj,---, Z{N) 

block 
number of members of the jth sample in the J th 

JN    N 'JN' 
z\T-b+1'--'' Z\T 
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Further, it will be helpful to recall some of the more use- 
ful relations between these quantities 

N 

1 
h 

i-1 

i=l    j=l " i-1 

k k k 

Y Wi+   =W++;       2   ^+   =^+'   2       ^^   = 

i=l i=l i-l 

k / \2 k 2 2 
sr       fWu.     V+A        V   ^      ^_ 

1=1     x '       i=i 

tf.;1 

0 ?c 

J-l *=1 

One can now introduce and illustrate the model III detectors. 

A. MODEL III SAMPLE Cpf DETECTORS 

The sample cpf detectors are those based on the given 
statistics. 
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1. Kolmogorov-Smirnov Detector 

£("1, ■ ••, nh ; s: *) 
h 

max 
r 

FtiZir)) -F(Z{r))   \   \/^ ^(Z(r))]     , 
i=l 

for which the most usual special case is 

(68) 

D(ni,   • ■, nx; 2; 1) = max 
r 1 

i=l 
H  Fi{Z{r))  -  - (69) 

2. Cramer-von Mises Detector 

^(nls- • •, n^ ; s ;*) 
N       h 

il     S    j 1^ iZ{r)) - F{Z{r))\ ^^[J (Z(r))] 

for which the usual special case is 

(70) 

N        k 

r=l    i=l ßN 
(71) 
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3. Sign Quantile Detector 

Qinv"-> nli;qx,--', qm is, *) 

771+1 h 

=    Z     Z 1 I n iZ(Nqt)) -Fi {ZiNq^ )) - (g.- q^)] *it 
t=l    i=l 

(72) 

for which the most usual version is 

i=l   ,7=1 

\       b 

1  1 -hi 
- N (73) 

B. MODEL III RUN-BLOCK DETECTORS 

Model III run-block detectors are used very sparingly, but 
the most usual one is based on the Mosteller-Tukey statistic 

M, length of last run, = max   n,; [l-^ (Jt(nt))] (74) 

C. MODEL III RANK-SUM DETECTORS 

Model III rank-sum detectors are based on statistics cor- 
responding to the numerator of the "J-statistic" in the ordinary 
analysis of variance 

K k 

8(8) -   In, (Sill   -Si£!\    =I<£i£ll 
i=l       \   ni N   I        i=i      Hi 

P     2 

N 

(75) 
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Usually one chooses H = U0 to obtain the statistic of the 
Kruskal-Wallis detector 

k 

'^^Njh) 4^7- ~m+1) (76) 

or H = $ to obtain the Model III Van de Waerder detector 

1 i\2 

(Hu1) 
5(*)=    Z.   —— (77) 

The detectors based on the expected values  £'[fvf(r)| i^] in- 

stead of the percentiles   H~Hz7~] are those whose statistics are 
of the form 

v        -    Ei+
2 (H)     E++

2 (H) sr /EU(H)     E++(H)\        ST 

1=1 \ l I T,=l 
(78) 

S^(l]Q) =S(U0), and (79) 

k 
2, y   EjSm 

5"($)=    Z      (80) 

are the usual special cases of this statistic. 

D. MODEL III ARTIFICIAL NOISE DETECTORS 

The final Model III rank-sum detectors are those which 
make use of artificial noise in making decisions.   (See illustrations, 
pp. 90, 96).   The statistics employed here are based on an idea 
of Doksum11 and are of the form 
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S(H) 2- 
i=l 

IT -1 Wt+
k 

(81) 

where H is the cpf of the artificial noise random sample ¥-y,- ••, ¥» 

S{<b) is the most common version in use.       (82) 

To illustrate the computations involved, the following 
example is presented. 

Example 13. The region being searched is divided into four 
sub regions, and the PFA is set at a = . 05. The data from the sec- 
tors turn out to be 

Sector 1:   4.7, 4.1, 4.5,  7.6, 6.9,  5.8 

Sector 2:   4.8, 4.4,  4.9,  5.7,  7.0 

Sector 3:   4.3, 5.4, 3.4,  4.6, 5.0 

Sector 4:   5.6, 5.3, 6.4,  6.0,  5.2, 6.5, 5.1.  4.2 

Consequently, one has 

/f=4,   ^=6, n2-5, ?i3=5,n4=8, and ^=24. 

The decision rules for the various detectors are as given. 

M detector:   Decide YES iff M^-i, the 95th percentile of the 
Mosteller-Tukey table 33 

W2{6, 5, 5,  8) detector:   Decide YES iffW2 > 1. 00,  the 95th per- 
centile of the Kiefer table. 

J(6, 5,  5, 8) detector:   Decide YES iff D > 3. 06, the 95th per- 
centile of the Kiefer table.33 

S(U0) = S'{U0) detector:   Decide YES iff S(U0) >7.81, the 95th 
percentile of chi-square distributions with 3 degrees 
of freedom. 
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£(j) detector:   Decide YES iff S{<S>) > 7. 81. 

Q (6, 5, 5,  8; 3) detector:   Decide YES iff Q > 12.59,  the 95th per- 
centile of the chi-square distribution with 6 degrees 
of freedom. 

Since all of the detectors being considered base their de- 
cisions solely on functions of the ranks i?(Zj7), the data may be 
ranked as shown in table 17. 

The last column of the table contains the ordered values of 
the data produced by an artificial normal noise generator:   0. 344, 
-0.664,  1.351,   -0.429,  -2.510,  -0.148,  -0.132,  -0.605,  0.379, 
0.394,  0.526,  -1.354,  1.119,  0.705,  -1.167, 0.256,  -0.517, 
-0.084, 1.553,  0.588,  0.336,  0.220,  -0.177 
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r Z(r)\ Sample Fi(Z(r)) M2(r)) F\ {Z{r ) ^ (m)\ 
^n^Hzir) r2    1 

Artificial 

Normal Noise 
W(r) 

l 3.4 3 o      ! 0          ^ .200 o .200 .158 -2.510 

2J 4.1 1       j .167    | 0          1 .200 0     ! .367 .200 -1.354 

3 4.2 | 4      i .167 0          1 .200 .125! .492 .117 -1.167 
4I 4.3 3 . 167    \ 0          i .400 .125 1.092 .425 -0.664 

5] 4.4 2 .167 .200 .400 .125 1,292 .250 -0,005 

6 4.5 1 .333 .200 .400 .125 1.791 .291 -0.517 

7 4.6 3 .333 .200 .600 .125 2.791 .749 -0.429 

8 4.7 1 .500 .200 .600 .125 3.625 .958 -0.177 

9 4.8 2 .500 .400 .600 .125 4.225 .850 -0.148 

10 4.9 2 .500 .600 .600 .125 5.225 1.058 -0.132 

11 5.0 3 .500 .600 .800 .125 6.625 1.583 -0.084 

12 5.1 4 .500 .600 .800 .250 7.000 1.000 0.014 

13 5.2 4 .500 .600 .800 .375 7.625 .583 0.220 

14 5.3 4 .500 .600 .800 .500 8.500 .333 0.256 

15 5.4 3 .500 .600 1.000 .500 10.300 .925 0.336 

16 5.6 j       4 j       .500 .600 1.000 .625 11.425 .758 0.344 

17 5.7 i       2 |       .500 i      .800 1.000 .625 12.825 .783 0.379 

18 5.8 1 .667 |      .800 1.000 .625 13.993 .493 0.394 

19 6.0 4 .667 .800 1.000 !          .750 15.367 .325 0.526 

20 [6.4 4 i       .667 .800 |     1.000 .875 j             17.013 ,346 0.588 

21 6.5 1       4 1      .667 1      .800 i      1.000 1        1.000 1              18.867 .501 j           0.705 

22 | 6.9 j       1 |      . 833 \      .800 |     1.000 ;      i.ooo 20.365 i        .199 1.119 

23 1 7.0 2 |      .833 j    1.000 1.000 |        1.000 j             22.165 .123 1.351 

24 1 7.6 i       1 |    1.000 j    1.000 1     1.000 1.000 1             24.000 1     0.000 1.553 

2;5(r)=217 
r 
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From the table one computes readily 

2 = 217070   _   (25M49) 
24 6 (24) 

D=max   (.158,  .200, •••,  .123,0.000)  =1.583; and 

N 

Consequently, the decisions are 

y2(6,  5, 5,  8) detector:   NO 

.0(6, 5, 5, 8) detector:   NO 

M detector:   NO 

In order to compute S{U0), S^Q) and Q{ni, • • •, n4 ; 3) it is 
convenient to construct tables 18 - 20. 

Table 18.   ^(^o) 

i = 1 2 3 4 

8 9 4 16 

2 5 15 14 

6 10 1 20 

24 17 7 19 

22 23 11 13 

18 21 

12 

3 

Ri + 80 64 38 118 300 

Entries are the ranks 5(Xij). 
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Table 19.   S {$) 

i = 1 2 3 4 

-0.177 -0.148 -0.664 0.349 

-1.354 -0.605 0.336 0.256 

-0.517 -0.132 -2.510 0.588 

1.553 0.379 -0,429 0.526 

1.119 1.351 -0.084 0.220 

0.394 0.705 

0.014 

-1.167 

Wi + 1.018 .845 -3.351 1.486 .002 

Entries are the [/[Ä^)] replacing the 1 1,7 

Table 20.    «(nj, • • •, n4; 3) 

i ~ 1 2 3 4 TOTALS 

1st 
Block 

3 1 3 1 8=1 
2nd 

Block 
0 2 2 4 

N 
8 = 3 

3rd 
Block 

3 2 0 3 8=~3 

2 nij 6 5 5 8 24 

Entries are the Hij. 
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3{ü0) 

5(#) 

From these last three tables one computes,  respectively, 

12 

(24)(25) 
(80)2   ., (64)2 | (38)2 + (118)- 

6        '558 

(1.018)2 + (. 845)2 + (-3.351)2     (1.486)2 

3(25) = 3.432 

(. 002)° 
24 

2.838; 

and 0(6, 5, 5,  8; 3) 

3 
32 + 02 + 32     I2 + 22 +• 22    32 + 22 + 02     I2 + 42 + 32 

 + + +  24 = 7.95 

These detectors then decide as follows: 

S{U0) detector:   NO 

'5($) detector:   NO; and 

)(6, 5, 5, 8; 3) detector:   NO. 
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E. GOODNESS CRITERIA FOR MODEL III DETECTORS 

The goodness criteria treated for Model I and Model II de- 
tectors are primarily related to one-sided alternatives as illus- 
trated previously (see page 41.)    Unfortunately,  when there are 
three or more samples to be compared, the term "one-sided 
alternatives" does not have a clear meaning, and the number of 
reasonable interpretations is excessively large to tabulate.   Con- 
sequently, no attempt will be made to apply the max-min PFD 
criterion or that for PFD with Rayleigh alternatives. 

12 No statistical work comparable to that of Bell and Doksum 
is currently available for adaptation to Model III detectors.   Hence, 
the ALM PFD criterion will not be employed here. 

18 However, the statistical work of Puri      and of Bell and 
Doksum11 can be adapted to give ARE results for some of the rank- 
sum Model HI detectors.   These results are replicas of tables 6 
and 14 with the appropriate changes of statistics.    From tables 21 
and 22 it is evident that the following adaptation of the results of 
Puri18 and of Bell and Doksum11  is valid. 

Theorem 12.     Under the regularity conditions of Puri 8 

and for translation alternatives, one has: 

(i) A [S{H), S'OO]  = A[S{H), S(H)]  =A [S\H),  S{H)]   =1 
for Model III detectors; and, in comparing corresponding 
Model I, II, and HI rank-sum detectors, 

(ii) A[K{H), K{G)]  =A[V(H)) V{G)]  =i[7,(fi),   V^G)]   = 
A [T{H), T{G)]  =A [S{H), S(G)]  =A [3r{H), S'iG)]   = 
A [S{H), S{G)] , for all (sufficiently regular) H and G. 
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Table 21.   ARE's for Model III Detectors 

XARE's 

TRANSLATION\ 
ALTERNATIVES \^ 

i 

i—i to       3 
^o to         >-' 
to   ;  . <tQ 

to ^ : ^. 
- ^ • •& 

^^ — 
-^   II         11 

i—i             i 

)^       '-»1 
>. 0) CO             >—' 
W    .  .  <o3 

% & '.  4. 
«• ^ .   ^ 

gjl 1 " '  
i—i^.      ^ 

■^ ii       ii 

i—i 1—'3      -» 

- ^ :   s^ s-~ •  £' 
3 to : <ca 
r/31    i     . 

■^      11                     11 

r^i to          ,0 

3 ^    ^ \ 
to -^ . 

),»-    •   lo 
C3 Co   . <c3 

Co I—i       
1—1 ^       ^ 

•^   II         II 

i—i 

1 1 to               o 

o Co           -^ 
to,           <Co 
03    -^    • 

^^ • ^ 

fe; to   : <co 
r^T1—'    '  

"=i|   II         II 

i—i 

)3 to      «ü. 
f1^      J        <Co       • 

^ ^ : toü 

^ co : <co   , 
c^^      

L-'^     ^ 
■^   II         II 

Normal 
1.05 

Uniform 
F0{x) - U0(x) 

oo oo oo 1.00 

Exponential 
F0(x) - He(x) 

oo OO .333 

Negative exponential 
F0{x) = He(x) 

= ex , x^O 

oo OO .333 

Logisti 

Foix) = 

c 
1 

.955 1.27 1.27 .75 .75 1.00 
1 + e-~ 

Double exponential 
ex/2,     x < o 

l-ex/2, x >o 
.85 

Cauchy 
1 !.   -i 
2 n 

.71 

,4 
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Table 22.   Statistical Distributions for Model III Detectors 

Statistic Distribution 

Source of Tables, 
Formulas, etc. 

(Numbers refer to 
Bibliography) 

D{ni, ••*,%, 2, 1) (/r-sample Kolmogorov- 
Smirnov) 

34 

^Vi»' "."fe. 2, 1) (fe-sample Cramer- 
von Mises) 

34 

Qin-i, ,nk, b) (Extended median) 
Asymptotically 
chi-square 

28,  p. 293; 
21, p. 49 ff 

M (Moste Uer-Tukey) 33 

S(U0),  S<iU0) Asymptotic chi-square 
(Kruslcal-Wallis) 

21,  p. 49 ff; 19, 
p. 290 ff 

5($) Asymptotic chi-square 
(Van de Waerden) 

21, p. 49 ff; 32 

5' (*) (Fisher-Yates) 
Asymptotic chi-square 

21,  p. 49 ff; 
31, p. 66 ff 

S(*) Chi-square 21, p. 49 ff; 11 
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